Abstract:
The cladding absorption of a single-mode, gain-producing fibers is increased in fiber designs that includes a trench region disposed between the core and inner cladding regions. Increased cladding absorption is achieved while maintaining single-mode operation.
Abstract:
The disclosure relates to a pump radiation arrangement comprising: a pump radiation source for producing pump radiation, a means for stabilizing the wavelength of the pump radiation source and a laser-active medium through which the pump radiation passes in a bidirectional manner. The pump radiation arrangement also has a retro-reflector for reflecting pump radiation which is not absorbed by the laser-active medium back to the pump radiation source and a wavelength-selective element for preventing a wavelength destabilization of the pump radiation source by filtering out undesirable spectral portions of pump radiation which is not absorbed by the laser-active medium. The invention also relates to an associated method for pumping a laser-active medium.
Abstract:
Nonlinear optical systems include fiber amplifiers using tapered waveguides such as optical fibers that permit multimode propagation but produce amplification and oscillation in a fundamental mode. The tapered waveguides generally are provided with an active dopant that is pumped with an optical pump source such as one or more semiconductor lasers. The active waveguide taper is selected to taper from a single or few mode section to a multimode section, and a seed beam in a fundamental mode is provided to a section of the waveguide taper associated with a smaller optical mode. An amplified beam exits the waveguide taper at a section associated with a larger optical mode. The amplified beam is directed to nonlinear conversion optics such as one or more nonlinear crystals to produce high peak power and high beam quality converted light using second or third harmonic generation, or other nonlinear processes.
Abstract:
The refractive index of the first core portion 11a is higher than that of a clad 12, and the refractive index of the second core portion 11b is higher than that of the first core portion 11a. When light of the LP01 mode and light of the LP11 mode are standardized by power, in the core 11, an active element that stimulates to emit light of the predetermined wavelength is doped at a higher concentration in at least a part of an area where power of light of the LP01 mode is larger than that of light of the LP11 mode than at least a part of an area where the power of light of the LP11 mode is larger than that of light of the LP01 mode.
Abstract:
A laser utilizes a cavity design which allows the stable generation of high peak power pulses from mode-locked multi-mode fiber lasers, greatly extending the peak power limits of conventional mode-locked single-mode fiber lasers. Mode-locking may be induced by insertion of a saturable absorber into the cavity and by inserting one or more mode-filters to ensure the oscillation of the fundamental mode in the multi-mode fiber. The probability of damage of the absorber may be minimized by the insertion of an additional semiconductor optical power limiter into the cavity.
Abstract:
Embodiments of the present invention generally relate to laser combiners, and more specifically, to all-fiber devices that combine optical laser power from multiple separate sources such as lasers or amplifiers. In one embodiment, a method of manufacturing a combiner device comprises: positioning an plurality of fibers into a bundle of fibers; drawing the bundle of fibers to create a tapered section, the tapered section having a first outer diameter at an input end, a second outer diameter at an output end, and a taper ratio of at least three; wherein at least one of the fibers of the bundle of fibers comprises an optical waveguide configured for propagating an optical mode from the input end to the output end, and wherein a mode field diameter of the optical mode at the input end is substantially the same as the mode field diameter at the output end.
Abstract:
The measurement apparatus combines first and second lights from first and second light generators to focus the combined light to a sample, and detect the first or second light intensity-modulated by stimulated Raman scattering. The first light generator includes a light dispersion element separating the light from a light introducing optical system in different directions according to light frequencies, and drives at least one of the light dispersion element and part of the light introducing optical system so as to change an incident angle of the light to the light dispersion element to extract part of the separated light, thereby making a light frequency of the first light variable. The second light generator produces a plurality of the second lights having mutually different light frequencies. The apparatus measures a Raman spectrum by changing the light frequency of the first light.
Abstract:
A source of femtosecond optical pulses comprises a seed pulse source arranged to generate seed pulses; an optical amplifier downstream of the seed pulse source, the optical amplifier having a gain bandwidth; a nonlinear optical element downstream of the amplifier, the optical element spectrally broadening optical pulses via a non linear process to have a spectral bandwidth that exceeds the gain bandwidth of the optical amplifier; and a pulse compressor downstream of the nonlinear optical element and arranged to reduce the temporal duration of optical pulses so as to provide output optical pulses having a femtoseconds time duration.
Abstract:
A side pumped laser comprises an elongated gain medium (10) provided between an output coupler (20) and a counter reflector (15) and a pump source (65) configured to provide radiation to the gain medium (10) along a side axis of the gain medium, wherein the laser is configured such that radiation from the pump source is directly incident on the gain medium; and the pump source is provided proximate, adjacent or in contact with the gain medium. The laser material and compositions, geometries and dimensions are designed to both maximise laser performance and to permit the use of construction techniques commonplace in the production of equipment designed for optical telecoms systems to facilitate low cost high volume and miniaturisation. The elongated gain medium (10) may have a polygonal cross-section with a non-coated side surface (55) receiving pump light emitted by a laser diode bar (65) while the other, non-emitting surfaces are coated with for example a gold coating (60) for pump light recycling and cooling of the gain medium by heat conduction. The counter reflector (15) may be provided on one facet of a passive Q-switch (30) and the output coupler (20) on a facet (50b) of the gain medium (10).
Abstract:
A system and method for selectively processing target tissue material in a patient include a laser subsystem for generating an output laser beam and a catheter assembly including an optical fiber for guiding the output laser beam. The beam has a predetermined selected wavelength between 900 nm and 2600 nm. The catheter assembly is sized to extend through an opening in a first part of the patient to a tissue material processing site within the patient. A beam delivery and focusing subsystem includes a focal distance, which may be adjustable, that positions the beam into at least one focused spot on the target tissue material disposed within a second part of the patient for a duration sufficient to allow laser energy to be absorbed by the target tissue material and converted to heat to produce a desired physical change in the target tissue material without causing undesirable changes to adjacent non-target material.