Abstract:
A nonvolatile memory device includes a pipe insulation layer having a pipe channel hole, a pipe gate disposed over the pipe insulation layer, a pair of cell strings each having a columnar cell channel, and a pipe channel coupling the columnar cell channels and surrounding inner sidewalls and a bottom of the pipe channel hole.
Abstract:
A semiconductor device includes word lines and interlayer insulating layers alternately stacked over a substrate, vertical channel layers protruding from the substrate and passing through the word lines and the interlayer insulating layers, a tunnel insulating layer surrounding each of the vertical channel layers, a charge trap layer surrounding the tunnel insulating layer, wherein first regions of the charge trap layer between the tunnel insulating layer and the word lines have a thickness smaller than a thickness of second regions thereof between the tunnel insulating layer and the interlayer insulating layers, and first charge blocking layer patterns surrounding the first regions of the charge trap layer.
Abstract:
A semiconductor device includes a substrate, and a gate line, located over the substrate, which includes a first conductive layer and one or more second conductive pattern layers located in the first conductive layer. The second conductive pattern layer comprises a metal layer to thus reduce resistance of a gate line.
Abstract:
A 3D structured nonvolatile semiconductor memory devices and methods for manufacturing are disclosed. One such device includes an n+ region at a source/drain region; a p+ region at the source/drain region; and a diffusion barrier material between the n+ region and the p+ region. The n+ region is substantially isolated from the p+ region.
Abstract:
A semiconductor device includes vertical channel layers, a pipe channel layer coupling bottoms of the vertical channel layers, a pipe gate contacting a bottom surface and side surfaces of the pipe channel layer, and a dummy pipe gate formed of a non-conductive material and contacting a top surface of the pipe channel layer.
Abstract:
There is provided a nonvolatile memory device having a tunnel dielectric layer formed over a substrate, the charge capturing layer formed over the tunnel dielectric layer and including a combination of at least one charge storage layer and at least one charge trap layer, a charge blocking layer formed over the charge capturing layer, and a gate electrode formed over the charge blocking layer.
Abstract:
A 3D non-volatile memory device includes a pipe gate, at least one first channel layer including a first pipe channel layer formed in the pipe gate and a pair of first source side channel layer and first drain side channel layer connected to the first pipe channel layer, and at least one second channel layer including a second pipe channel layer formed in the pipe gate and positioned over the first pipe channel layer and a pair of second source side channel layer and second drain side channel layer connected to the second pipe channel layer.
Abstract:
A method for fabricating a vertical channel type nonvolatile memory device includes: stacking a plurality of interlayer insulating layers and a plurality of gate electrode conductive layers alternately over a substrate; etching the interlayer insulating layers and the gate electrode conductive layers to form a channel trench exposing the substrate; forming an undoped first channel layer over the resulting structure including the channel trench; doping the first channel layer with impurities through a plasma doping process; and filling the channel trench with a second channel layer.
Abstract:
A semiconductor device includes memory blocks each configured to comprise a pair of channels, each channel including a pipe channel formed in a pipe gate of the memory block and a drain-side channel and a source-side channel coupled to the pipe channel; first slits placed between the memory blocks adjacent to other memory blocks; and a second slit placed between the source-side channel and the drain-side channel of each pair of channels.