Abstract:
A multi-touch remote control method comprises following steps: a remote control device receiving a touch gesture input; computing a number of the touch points of the touch gesture input; generating and transferring a mouse event data to a receiving device as a mouse input if the number of the touch points is 1; and generating and transferring a single touch event data to the receiving device as a single touch input if the number of the touch points is greater than 1 and all the touch points of the touch gesture input are close to each other.
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
Abstract:
A semiconductor stack having a protective layer formed into a low k dielectric material is provided. The method for forming the protective layer in a low k dielectric material may include plasma etching the low k dielectric material to form Si—OH bonds on a surface of the low k dielectric material, exposing the Si—OH bonds to a silicon containing fluid solution, and replacing the Si—OH bonds with Si—Si bonds generated by the silicon containing fluid solution to form a protective layer on the surface of the low k dielectric material.
Abstract:
A method and apparatus for annealing copper. The method comprises forming a copper layer by electroplating on a substrate in an integrated processing system and annealing the copper layer in a chamber inside the integrated processing system.
Abstract:
The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
Abstract:
The present invention provides methods for fabricating integrated circuit structures for use in semiconductor wafer fabrication techniques. A Cu diffusion barrier/Cu seed sandwich layer is deposited on a substrate. A first sacrificial layer, deposited on the sandwich layer, is developed to form a cavity. A first Cu layer is selectively deposited on the sandwich layer inside the cavity. A second sacrificial layer is deposited on the first sacrificial layer and on the first Cu layer. A cavity is formed in the second sacrificial layer, exposing at least a portion of the first Cu layer. A second Cu layer is selectively deposited in the second sacrificial layer cavity including the exposed portion of the first Cu layer. The combination of the first and second Cu layers forms a Cu component. Subsequently, the first and second sacrificial layers are removed resulting in a Cu component that is free standing on the sandwich layer, such that the top and sides of the component are exposed. Sandwich layer portions extending from the Cu component are removed from the substrate, thereby forming an exposed sandwich layer edge between the surface of the Cu component and the substrate. A Cu diffusion barrier layer is deposited on the Cu component and on the exposed edge of the sandwich layer, resulting in a Cu barrier layer encapsulated component. The encapsulated component is encased in a dielectric layer. Similarly, Cu components of the present invention are fabricated by means of selective electroless Cu deposition in a sacrificial layer cavity having a metal layer that is formed by selective electroless deposition of a metal on a sensitizer layer. Examples of Cu components and encapsulated Cu components of the present invention include vertical interconnects and inverted damascene structures.
Abstract:
A method for processing a substrate. The method generally includes forming a copper interconnect in a sacrificial layer deposited on the substrate by patterning the sacrifical layer to form an interconnect and filling the interconnect with copper. The method additionally includes removing at least a portion of the sacrificial layer upon copper interconnect formation, depositing a barrier layer on the copper interconnect, and depositing a dielectric layer on the barrier layer.
Abstract:
A method of forming a copper layer with increased electromigration resistance. A doped copper layer is formed by controlling the incorporation of a non-metallic dopant during copper electroplating.