摘要:
Complimentary metal-oxide-semiconductor nanowire structures are described. For example, a semiconductor structure includes a first semiconductor device. The first semiconductor device includes a first nanowire disposed above a substrate. The first nanowire has a mid-point a first distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. A first gate electrode stack completely surrounds the discrete channel region of the first nanowire. The semiconductor structure also includes a second semiconductor device. The second semiconductor device includes a second nanowire disposed above the substrate. The second nanowire has a mid-point a second distance above the substrate and includes a discrete channel region and source and drain regions on either side of the discrete channel region. The first distance is different from the second distance. A second gate electrode stack completely surrounds the discrete channel region of the second nanowire.
摘要:
Nanowire structures having non-discrete source and drain regions are described. For example, a semiconductor device includes a plurality of vertically stacked nanowires disposed above a substrate. Each of the nanowires includes a discrete channel region disposed in the nanowire. A gate electrode stack surrounds the plurality of vertically stacked nanowires. A pair of non-discrete source and drain regions is disposed on either side of, and adjoining, the discrete channel regions of the plurality of vertically stacked nanowires.
摘要:
Techniques are disclosed for enabling multi-sided condensation of semiconductor fins. The techniques can be employed, for instance, in fabricating fin-based transistors. In one example case, a strain layer is provided on a bulk substrate. The strain layer is associated with a critical thickness that is dependent on a component of the strain layer, and the strain layer has a thickness lower than or equal to the critical thickness. A fin is formed in the substrate and strain layer, such that the fin includes a substrate portion and a strain layer portion. The fin is oxidized to condense the strain layer portion of the fin, so that a concentration of the component in the strain layer changes from a pre-condensation concentration to a higher post-condensation concentration, thereby causing the critical thickness to be exceeded.
摘要:
Nanowire structures having non-discrete source and drain regions are described. For example, a semiconductor device includes a plurality of vertically stacked nanowires disposed above a substrate. Each of the nanowires includes a discrete channel region disposed in the nanowire. A gate electrode stack surrounds the plurality of vertically stacked nanowires. A pair of non-discrete source and drain regions is disposed on either side of, and adjoining, the discrete channel regions of the plurality of vertically stacked nanowires.
摘要:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
摘要:
Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
摘要:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
摘要:
Uniaxially strained nanowire structures are described. For example, a semiconductor device includes a plurality of vertically stacked uniaxially strained nanowires disposed above a substrate. Each of the uniaxially strained nanowires includes a discrete channel region disposed in the uniaxially strained nanowire. The discrete channel region has a current flow direction along the direction of the uniaxial strain. Source and drain regions are disposed in the nanowire, on either side of the discrete channel region. A gate electrode stack completely surrounds the discrete channel regions.
摘要:
A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
摘要:
The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming isolation structures in strained semiconductor bodies of non-planar transistors while maintaining strain in the semiconductor bodies.