Abstract:
Silicon-on-insulator (SOI) structures and related methods of forming such structures. In one case, a method includes providing a silicon-on-insulator (SOI) handle substrate having: a substantially uniform resistivity profile along a depth of the handle substrate; and an interstitial oxygen (Oi) concentration of less than approximately 10 parts per million atoms (ppma). The method further includes counter-doping a surface region of the handle, causing the surface region to have a resistivity greater than approximately 3 kOhm-cm, and joining the surface region of the handle substrate with a donor wafer.
Abstract:
A method patterns a polysilicon gate over two immediately adjacent, opposite polarity transistor devices. The method patterns a mask over the polysilicon gate. The mask has an opening in a location where the opposite polarity transistor devices abut one another. The method then removes some (a portion) of the polysilicon gate through the opening to form at least a partial recess (or potentially a complete opening) in the polysilicon gate. The recess separates the polysilicon gate into a first polysilicon gate and a second polysilicon gate. After forming the recess, the method dopes the first polysilicon gate using a first polarity dopant and dopes the second polysilicon gate using a second polarity dopant having an opposite polarity of the first polarity dopant.
Abstract:
A method for forming passivated through wafer vias, passivated through wafer via structures, and passivated through wafer via design structures. The method includes: forming a through wafer via in a semiconductor substrate, the through wafer via comprising an electrical conductor extending from a top of the semiconductor substrate to a bottom surface of the semiconductor substrate; and forming a doped layer abutting all sidewalls of the electrical conductor, the doped layer of a same dopant type as the semiconductor substrate, the concentration of dopant in the doped layer greater than the concentration of dopant in the semiconductor substrate, the doped layer intervening between the electrical conductor and the semiconductor substrate.
Abstract:
A pixel sensor cell including a column circuit, a design structure for fabricating the pixel sensor cell including the column circuit and a method for operating the pixel sensor cell including the column circuit are predicated upon the measurement of multiple reference data point and signal data point pairs from a floating diffusion at a variable capacitance. The variable capacitance is provided by excluding or including a transfer gate transistor capacitance in addition to a floating diffusion capacitance. Such a variable capacitance provides variable dynamic ranges for the pixel sensor cell including the column circuit.
Abstract:
A method for manufacturing a pixel sensor cell that includes a photosensitive element having a non-laterally disposed charge collection region. The method includes forming a trench recess in a substrate of a first conductivity type material, and filling the trench recess with a material having second conductivity type material. The second conductivity type material is then diffused out of the filled trench material to the substrate region surrounding the trench to form the non-laterally disposed charge collection region. The filled trench material is removed to provide a trench recess, and the trench recess is filled with a material having a first conductivity type material. A surface implant layer is formed at either side of the trench having a first conductivity type material. A collection region of a trench-type photosensitive element is formed of the outdiffused second conductivity type material and is isolated from the substrate surface.
Abstract:
Systems and methods simultaneously form first openings and second openings in a substrate. The first openings are formed smaller than the second openings. The method also simultaneously forms a first material in the first openings and the second openings. The first material fills the first openings, and the first material lines the second openings. The method forms a second material different than the first material in the second openings. The second material fills the second openings. The method forms a plurality of integrated circuit structures over the first material and the second material within the second openings. The method applies mechanical stress to the substrate to cause the substrate to split along the first openings.
Abstract:
The image qualify of an image frame from a CMOS image sensor array operated in global shutter mode may be enhanced by dispersing or randomizing the noise introduced by leakage currents from floating drains among the rows of the image frame. Further, the image quality may be improved by accounting for time dependent changes in the output of dark pixels in dark pixel rows or dark pixel columns. In addition, voltage and time dependent changes in the output of dark pixels may also be measured to provide an accurate estimate of the noise introduced to the charge held in the floating drains. Such methods may be employed individually or in combination to improve the quality of the image.
Abstract:
Disclosed herein are embodiments of an interface device (e.g., a display, touchpad, touchscreen display, etc.) with integrated power collection functions. In one embodiment, a solar cell or solar cell array can be located within a substrate at a first surface and an array of interface elements can also be located within the substrate at the first surface such that portions of the solar cell(s) laterally surround the individual interface elements or groups thereof. In another embodiment, a solar cell or solar cell array can be located within the substrate at a first surface and an array of interface elements can be located within the substrate at a second surface opposite the first surface (i.e., opposite the solar cell or solar cell array). In yet another embodiment, an array of diodes, which can function as either solar cells or sensing elements, can be within a substrate at a first surface and can be wired to allow for selective operation in either a power collection mode or sensing mode.
Abstract:
A global shutter compatible pixel circuit comprising a reset gate (RG) transistor is provided in which a dynamic voltage is applied to the drain of the reset gate transistor in order to reduce a floating diffusion (FD) leakage therethrough during signal hold time. The drain voltage of the reset gate transistor is held at a lower voltage than a circuit supply voltage to minimize the off-state leakage through the RG transistor, thus reducing the change in the voltage at the floating diffusion during the signal hold time. In addition, a design structure for such a circuit providing a dynamic voltage to the drain of a reset gate of a pixel circuit is also provided.
Abstract:
An electronic packaging having at least one bond pad positioned on a chip for effectuating through-wafer connections to an integrated circuit. The electronic package is equipped with an edge seal between the bond pad region and an active circuit region, and includes a crack stop, which is adapted to protect the arrangement from the entry of deleterious moisture and combination into the active regions of the chip containing the bond pads.