Abstract:
An improved micromachined structure used for beam scanners, gyroscopes, etc. includes a reference member from which project a first pair of axially aligned torsion bars. A first dynamic member, coupled to and supported from the reference member by the torsion bars, oscillates in one-dimension about the torsion bar's axis. A second dynamic member may be supported from the first dynamic member by a second pair of axially aligned torsion bars for two-dimensional oscillation. The dynamic members respectively exhibit a plurality of vibrational modes each having a frequency and a Q. The improvement includes means for altering a characteristic of the dynamic member's frequency and Q. Coupling between dynamic members permits altering the second dynamic member's frequency and Q by techniques applied to the first dynamic member. Some techniques disclosed also increase oscillation amplitude or reduce driving voltage, and also increase mechanical ruggedness of the structure.
Abstract:
A microactuator (32) of an implantable hearing aid system (10) is secured within a casing (50) implanted into a fenestration (52) that pierces the promontory (18) of the otic capsule bone (31). The casing (50) includes a hollow sleeve (62) that has an outer surface (64) and a first end (66) that is received into the fenestration (52). The sleeve (62) also includes an inner surface (68) adapted to receive a barrel (74) of the microactuator (32). The casing (62) also includes a flange (76) that is integral with the sleeve (62) and projects outward from the outer surface (64) of the sleeve (62) about a second end (78) of the sleeve (62). Various means secure the sleeve (62) within the fenestration (52) such as screwing into the promontory (18) or clamping to the promontory (18). The casing may fasten the microactuator (32) to the casing (50) by a threaded attachment, with screws, with button-and-socket snap fasteners, or with a slotted tongue-and-groove lock. A dummy plug may replace the microactuator (32) should removal become necessary.
Abstract:
A topographic head for profilometry and AFM supports a central paddle by coaxial torsion bars projecting inward from an outer frame. A tip projects from the paddle distal from the bars. The torsion bars include an integrated paddle rotation sensor. A XY stage may carry the topographic head for X and Y axis translation. The XYZ stage's fixed outer base is coupled to an X-axis stage via a plurality of flexures. The X-axis stage is coupled to a Y-axis stage also via a plurality of flexures. One of each set of flexures includes a shear stress sensor. A Z-axis stage may also be included to provide an integrated XYZ scanning stage. The topographic head's frame, bars and paddle, and the XYZ stage's stage-base, X-axis, Y-axis and Z-axis stages, and flexures are respectively monolithically fabricated by micromachining from a semiconductor wafer.
Abstract:
Forming micro-probe tips for an atomic force microscope, a scanning tunneling microscope, a beam electron emission microscope, or for field emission, by first thinning a tip of a first material, such as silicon. The tips are then reacted with a second material, such as atoms from an organic or ammonia vapor, at a temperature of about 1000.degree. C..+-.200.degree. C. and vacuum conditions for several minutes. Vapors such as methane, propane or acetylene will be converted to SiC or WC while ammonia will be converted to Si.sub.3 N.sub.4. The converted material will have different physical, chemical and electrical properties. For example, a SiC tip will be superhard, approaching diamond in hardness. Electrically conductive tips are suitable for field emission.
Abstract:
An inspection apparatus for a light diffracting surface employs a planar array of individually addressable light valves for use as a spatial filter in an imaged Fourier plane of a diffraction pattern, with valves having a stripe geometry corresponding to positions of members of the diffraction pattern, blocking light from those members. The remaining valve stripes, i.e. those not blocking light from diffraction order members, are open for transmission of light. Light directed onto the surface, such as a semiconductor wafer, forms elongated curved diffraction orders from repetitive patterns of circuit features. The curved diffraction orders are transformed to linear orders by a Fourier transform lens. The linear diffraction orders from repetitive patterns of circuit features are blocked, while light from non-repetitive features, such as dirt particles or defects is allowed to pass through the light valves to a detector. Patterns of stripes can be recorded corresponding to the repetitive features of different integrated circuits. Different filters may be rapidly switched electronically in synchronization with a beam scanning a patterned surface inspecting different light diffracting patterns in different positions, allowing scattered or diffracted light from non-repetitive features to pass through the filter to a detector. A logical AND combination of two filters may be used so that two regions may be inspected in a single scan of the beam.
Abstract:
An apparatus used to inspect patterned wafers and other substrates with periodic features for the presence of particles, defects and other aperiodic features in which a spatial filter placed in the Fourier plane is used in combination with either broadband illumination, angularly diverse illumination or both. In contrast to prior devices that direct light from a single monochromatic source through a pinhole aperture stop, embodiments are describes that illuminate a patterned substrate using (1) a single monochromatic source with a slit-shaped aperture stop for angularly diverse illumination, (2) a single broadband source with a pinhole aperture stop for broadband illumination, (3) a single broadband source with a slit-shaped aperture stop for both broadband and angularly diverse illumination, or (4) multiple sources with an aperture stop for each source for at least angularly diverse illumination. The spatial filters for these illumination systems are characterized by opaque tracks in an otherwise transmissive filter for blocking the elongated bands produced by diffraction from the periodic features on the illuminates substrate. The filter may be made photographically by exposing high contrast film placed in or near the Fourier plane to the diffracted light from a defect and particle frame substrate having only periodic features. Light scattered from the aperiodic features is able to substantially pass through the filter and be imaged onto, a CCD array, vidicon camera or TDI sensor.
Abstract:
A method for fabricating a microtip, cantilevered from a base and having a controllably high aspect ratio, for use in microprobe microscopy to probe variations in materials at the atomic level. A two-layer semiconductor material structure is provided, one layer being n type and the other layer being p type. A thin pencil of ions of n type is implanted through the n type layer into the p type layer, through a small aperture in a mask layer that overlies the n type layer. The p type material is then etched away, leaving the n type ion profile and the n type layer as a cantilevered microtip. The n type semiconductor layer may be replaced by a layer of any material that resists etching by the selected etchant.
Abstract:
A particle detection on a periodic patterned surface is achieved in a method and apparatus using a single light beam scanning at a shallow angle over the surface. The surface contains a plurality of identical die with streets between die. The beam scans parallel to a street direction, while a light collection system collects light scattered from the surface with a constant solid angle. The position of the collection system as well as the polarization of the light beam and collected scattered light may be arranged to maximize the particle signal compared to the pattern signal. A detector produces an electrical signal corresponding to the intensity of scattered light that is colelcted. A processor constructs templates from the electrical signal corresponding to individual die and compares the templates to identify particles. A reference template is constantly updated so that comparisons are between adjacent die. In one embodiment, the templates are made up of registered positions where the signal crosses a threshold, and the comparison is between corresponding positions to eliminate periodic pattern features, leaving only positions representing particles.
Abstract:
A confocal measuring microscope including a spectrometer and autofocus system sharing common optical elements in which the intensity of light entering the spectrometer from a particular spot on a workpiece is used to determine a focus condition for the same spot. The microscope includes at least one light source, an illumination field stop, and a microscope objective that images the stop onto a workpiece supported by a movable platform. The objective also forms an image of the illuminated portion of the object. An aperture in a second stop and intersecting the image plane passes light from part of the image to the spectrometer, while viewing optics are used to view the image. In one embodiment, a detector is placed at the zero order position, while in another embodiment a laser is placed at the zero order position. In the later embodiment an integrator circuit connected to the detector array replaces the zero order detector for measuring the total intensity of light entering the spectrometer. A best focus condition occurs when the total intensity is a maximum for a positive confocal configuration, i.e. where source and detector are on opposite sides of their respective field stops from said workpiece, and a minimum for a negative confocal configuration, i.e. where the source and workpiece are on the same side of a reflective illumination field stop with aperture. The movable platform may be scanned axially to achieve and maintain object focus as the object is scanned transversely.
Abstract:
An aligner for aligning a mask and a wafer during photolithography of a semiconductor chip uses detection of the differential capacitance between two sets of conductive fingers on the mask and ridges on the wafer. An A.C. signal is coupled between the ridges and the fingers and the phase or amplitude of the signals is detected. An aligner utilizing multiple groups of ridges and fingers allows rotational alignment or two axis lateral alignment. An aligner having reference ledges to which the mask and the wafer are capacitively coupled allows alignment when the distance between the mask and the wafer is too great to permit meaningful capacitive coupling between the mask and the wafer to occur.