摘要:
The present invention provides a radio transmitter having a digital modulator that further includes logic for continuous amplitude and continuous phase modulation switching in an RF transmitter intended to support both frequency shift keying (FSK) and phase shift keying (PSK) modulation techniques in a smooth and continuous manner that does not violate spectral mask requirements. The invention supports continuous modulation switching both ways, i.e., from FSK to PSK and from PSK to FSK. In operation, the radio transmitter initially operates in a first communication mode, transmitting communication signals to a remote agent according to a first modulation technique at a first data rate and then transitions to the second modulation type at a second data rate without spectral mask violation.
摘要:
A data slicer for an FSK demodulator employs a peak and valley detector, each of which has a discharge path with selectable decay rates. The faster decay rate for the peak and valley detector outputs is selected when the difference between the current peak and valley voltages exceeds a predetermined percentage of the expected swing of the voltage input and when a packet has not been detected. When a packet is detected, a slower decay rate is selected. In this mode, the faster decay rate permits faster acquisition of packet data in the presence of DC offset, as it permits the data slicer to converge on an appropriate switching point more quickly.
摘要:
A method and/or apparatus for cooperative transceiving between wireless interface devices of a host device includes processing that begins by providing an indication of receiving an inbound packet from one wireless interface device (e.g., Bluetooth compliant radio transceiver, IEEE 802.11 compliant radio transceiver, etc.) to another. The wireless interlace device receiving the indication processes the indication and, based on the processing, transmits an outbound packet in accordance with the processing of the indication. For example, the wireless interface device receiving the indication may delay transmission until the other wireless interface device has received the packet, or, if transmission of the packet would not interfere with the receiving of the packet by the other wireless interface device, the wireless interface device receiving the indication would transmit its packet.
摘要:
A circuit includes a first wireless interface circuit that transceives packetized data between a host module and a first external device in accordance with a first wireless communication protocol, wherein the first wireless protocol carries wireless telephony data for communication with a wireless telephony network. A second wireless interface circuit transceives packetized data between the host module and a second external device in accordance with a second wireless communication protocol. The second wireless interface circuit includes at least one module that is shared with first wireless interface circuit. The first wireless interface circuit and the second wireless interface circuit operate in accordance with a wireless interface schedule that includes a first time interval where the first wireless interface device and the second wireless interface device contemporaneously use the at least one module.
摘要:
A core module for a portable computing device includes a wireless power receiver module, a battery power module, a power supply module, a processing module, and an RF link interface. The wireless power receiver module, when operable, receives a wireless power transmit signal and converts it into a supply voltage. The battery power module, when operable, outputs a battery voltage. The power supply module, when operable, converts the supply voltage or the battery voltage into one or more power supply voltages. The processing module is operable to select one of the battery voltage, the supply voltage, and one of the one or more power supply voltages to produce a selected voltage. The RF link interface outputs the selected voltage on to an RF link of the portable computing device for providing power to one or more multi mode RF units within the portable computing device.
摘要:
A polar transmitter includes a two-point modulation phase-locked loop (PLL) for producing an RF signal with a wide bandwidth. The PLL includes a first input for receiving a phase signal of a variable-envelope modulated signal and providing the phase signal along a first signal path to produce a first frequency modulation signal and a second input for receiving the phase signal and providing the phase signal along a second signal path to produce a second frequency modulation signal. The PLL further includes a voltage controlled oscillator (VCO) having two modulation points, one for receiving the first frequency modulation signal and the other for receiving the second frequency modulation signal. The VCO is controlled by an aggregate of the first frequency modulation signal and the second frequency modulation signal to up-convert the phase signal from an IF to an RF to produce the RF signal with a wide bandwidth.
摘要:
Angle of arrival and/or range estimation within a wireless communication device. Appropriate processing of communications received by a wireless communication device is performed to determine the angle of arrival of the communication (e.g., with respect to some coordinate basis of the wireless communication device). Also, appropriate processing of the communications may be performed in accordance with range estimation as performed by the wireless communication device to determine the distance between the transmitting and receiving wireless communication devices. There are two separate modes of packet processing operations that may be performed: (1) when contents of the received packet are known, and (2) when contents of the received packet are unknown. The wireless communication device includes a number of antenna, and a switching mechanism switches from among the various antennae capitalizing on the spatial diversity of the antennae to generate a multi-antenna signal.
摘要:
A polar transmitter includes a two-point modulation phase-locked loop (PLL) for producing an RF signal with a wide bandwidth. The PLL includes a first input for receiving a phase signal of a variable-envelope modulated signal and providing the phase signal along a first signal path to produce a first frequency modulation signal and a second input for receiving the phase signal and providing the phase signal along a second signal path to produce a second frequency modulation signal. The PLL further includes a voltage controlled oscillator (VCO) having two modulation points, one for receiving the first frequency modulation signal and the other for receiving the second frequency modulation signal. The VCO is controlled by an aggregate of the first frequency modulation signal and the second frequency modulation signal to up-convert the phase signal from an IF to an RF to produce the RF signal with a wide bandwidth.
摘要:
A method for temperature compensation of transmit power of a wireless communication device begins by measuring transmit power of the wireless communication device at a first temperature-based biasing condition to produce a first measured transmit power. The method continues by measuring transmit power of the wireless communication device at a second temperature-based biasing condition to produce a second measured transmit power. The method continues by determining ambient temperature of at least a portion of the wireless communication device based on the first and second measured transmit powers and a relationship between the first and second temperature-based biasing conditions. The method continues by compensating transmit power level of the wireless communication device based on the ambient temperature.
摘要:
A method for use by one peer of peer wireless interfaces devices of a wireless communication device to cooperatively provide wireless communications in a multiple wireless communication environment with other peers of the peer wireless interface devices begins by initiating an atomic sequence of a plurality of atomic sequences. The processing continues by setting a priority level corresponding to the atomic sequence to produce a corresponding priority level. The processing continues by sensing priority level of at least one of the other peers to produce a sensed priority level. The processing continues by comparing the sensed priority level with the corresponding priority level. The processing then continues by performing at least a portion of the atomic sequence when the comparing of the sensed priority level with the corresponding priority level is favorable.