Abstract:
The invention relates to an electric door-locking system to be applied to at least one electric door body that is movable in a sliding manner, and includes forwardly and reversely rotatable screws disposed side by side along a direction in which the electric door body slides at the side of a door frame; a cam assembly provided at a predetermined position of the screws to perform a locking function and an unlocking function; and a sliding unit provided with a locking roller resiliently biased in a direction toward the cam assembly and engaging with the cam assembly to perform the locking function, one end of the sliding unit being rotatably connected to the screw and the other end of the sliding unit being connected to the electric door body.
Abstract:
A polycrystalline semiconductor layer is formed on a cell active region and a peripheral active region of a substrate. A buried gate electrode is formed in the substrate in the cell active region at a level below the polycrystalline semiconductor layer after forming the polycrystalline semiconductor layer. A gate electrode is formed on the substrate in the peripheral active region from the polysilicon semiconductor layer after forming the buried gate electrode.
Abstract:
According to some embodiments of the invention, a fin type transistor includes an active structure integrally formed with a silicon substrate. The active structure includes grooves that form blocking regions under source/drain regions. A gate structure is formed to cross the upper face of the active structure and to cover the exposed side surfaces of the lateral portions of the active structure. An effective channel length of a fin type transistor may be sufficiently ensured so that a short channel effect of the transistor may be prevented and the fin type transistor may have a high breakdown voltage.
Abstract:
Semiconductor memory devices include a semiconductor substrate and a plurality of semiconductor material pillars in a spaced relationship on the semiconductor substrate. Respective surrounding gate electrodes surround ones of the pillars. A first source/drain region is in the semiconductor substrate between adjacent ones of the pillars and a second source/drain region is in an upper portion of at least one of the adjacent pillars. A buried bit line is in the first source/drain region and electrically coupled to the first source/drain region and a storage node electrode is on the upper portion of the at least one of the adjacent pillars and electrically contacting with the second source/drain region.
Abstract:
A method of fabricating a semiconductor device for reducing a thermal burden on impurity regions of a peripheral circuit region includes preparing a substrate including a cell active region in a cell array region and peripheral active regions in a peripheral circuit region. A cell gate pattern and peripheral gate patterns may be formed on the cell active region and the peripheral active regions. First cell impurity regions may be formed in the cell active region. A first insulating layer and a sacrificial insulating layer may be formed to surround the cell gate pattern and the peripheral gate patterns. Cell conductive pads may be formed in the first insulating layer to electrically connect the first cell impurity regions. The sacrificial insulating layer may be removed adjacent to the peripheral gate patterns. First and second peripheral impurity regions may be sequentially formed in the peripheral active regions adjacent to the peripheral gate patterns.
Abstract:
A recessed transistor and a method of manufacturing the same are provided. The recessed transistor may include a substrate, an active pin, a gate pattern and source and drain regions. The substrate may include an isolation layer that establishes an active region and a field region of the substrate. The substrate may include a recessed structure having an upper recess formed in the active region and a lower recess in communication with the upper recess. An active pin may be formed in a region between side surfaces of the isolation layer and the lower recess and an interface between the active region and the field region. The gate pattern may include a gate insulation layer formed on an inner surface of the recessed structure and a gate electrode formed on the gate insulation layer in the recessed structure. The source/drain regions may be formed adjacent to the active region and the gate electrode.
Abstract:
A semiconductor device includes a semiconductor substrate having a first conductivity type and having an upper portion, a pair of bit lines extending in a first direction and doped with an impurity of a second conductivity type opposite to the first conductivity type and spaced from one another in the upper portion of the semiconductor substrate, a first line formed between the pair of bit lines having a plurality of alternating recessed device isolation regions and channel regions, with each of the channel regions contacting each bit line of the at least one pair of bit lines, and word lines formed at right angles to the first lines and covering the channel regions.
Abstract:
An isolation method of defining active fins, a method of fabricating a semiconductor device using the same, and a semiconductor device fabricated thereby are provided. The method of fabricating a semiconductor device includes: preparing a semiconductor substrate; and forming a plurality of active fins having major and minor axes and two-dimensionally arrayed on the semiconductor substrate in directions of the major and minor axes. A liner pattern is formed on lower sidewalls of the active fins. An isolation layer is formed on the semiconductor substrate having the liner pattern, and the isolation layer exposes top surfaces of the active fins and a part of the active fins' sidewalls substantially parallel to the major axis. Parallel gate lines are formed to cover the top surfaces and the exposed sidewalls of the active fins, cross over the active fins, and run on the isolation layer.
Abstract:
Disclosed is a process for producing light olefins from hydrocarbon feedstock. The process is characterized in that a porous molecular sieve catalyst consisting of a product obtained by evaporating water from a raw material mixture comprising a molecular sieve with a framework of Si—OH—Al— groups, a water-insoluble metal salt, and a phosphate compound, is used to produce light olefins, particularly ethylene and propylene, from hydrocarbon, while maintaining excellent selectivity to light olefins. According to the process, by the use of a specific catalyst with hydrothermal stability, light olefins can be selectively produced in high yield with high selectivity from hydrocarbon feedstock, particularly full-range naphtha. In particular, the process can maintain higher cracking activity than the reaction temperature required in the prior thermal cracking process for the production of light olefins, and thus, can produce light olefins with high selectivity and conversion from hydrocarbon feedstock.
Abstract:
Provided is an optical semiconductor device including: an active layer having at least one quantum well layer and at least one barrier layer; a clad layer formed adjacent to the active layer; and a tunneling barrier layer formed between the active layer and the clad layer to be connected to the quantum well layer and formed of a material having a band-gap energy larger than the barrier layer, whereby it is possible to improve the drive characteristics at a high temperature and a high drive current by increasing a confinement effect of carriers such as electrons and holes in the active layer.