摘要:
A three-dimensional stacked optical device includes a transparent substrate having at least one interconnect member, and an optical device mounted to the at least one interconnect member on the transparent substrate. The optical device includes a first surface coupled to the at least one interconnect member that extends to a second surface through an intermediate portion. An insulating layer encapsulates the optical device. The insulating layer includes a first surface that extends to a second surface. The first surface abuts the transparent substrate. A communication path extends between the first surface of the optical device and the second surface of the insulating layer. An electronic chip is mounted to the second surface of the insulating layer. The electronic chip includes a first surface and a second surface. The first surface is coupled to the communication path so as to form the three-dimensional stacked optical device.
摘要:
Techniques for producing a flexible structure attached to a device. One embodiment includes the steps of providing a first substrate, providing a second substrate with a releasably attached flexible structure, providing a bonding layer on at least one of the first substrate and the flexible structure, adjoining the first and second substrate such that the flexible structure is attached at the first substrate by means of the bonding layer, and detaching the second substrate in such a way that the flexible structure remains on the first substrate.
摘要:
A method for producing an integrated device. A source substrate is provided, the source substrate carrying one or more components to be attached to a receiver surface having a uneven topography. The source substrate includes a deformable layer on a surface on which the one or more components are carried. The source substrate is aligned such that said one or more components carried thereon are associated with contact areas of the receiver surface. The source substrate and the receiver surface are moved towards each other such that the one or more components are brought into contact with the contact areas wherein the deformable layer is at least partially deformed. The source substrate is removed such that the one or more of the components remain located on the contact areas of the receiver surface.
摘要:
A resist medium in which features are lithographically produced by scanning a surface of the medium with an AFM probe positioned in contact therewith. The resist medium comprises a substrate; and a polymer resist layer within which features are produced by mechanical action of the probe. The polymer contains thermally reversible crosslinkages. Also disclosed are methods that generally includes scanning a surface of the polymer resist layer with an AFM probe positioned in contact with the resist layer, wherein heating the probe and a squashing-type mechanical action of the probe produces features in the layer by thermally reversing the crosslinkages.
摘要:
A resist medium in which features are lithographically produced by scanning a surface of the medium with an AFM probe positioned in contact therewith. The resist medium comprises a substrate; and a polymer resist layer within which features are produced by mechanical action of the probe. The polymer contains thermally reversible crosslinkages. Also disclosed is a method that generally includes scanning a surface of the polymer resist layer with an AFM probe positioned in contact with the resist layer, wherein heating the probe and a squashing-type mechanical action of the probe produces features in the layer by thermally reversing the crosslinkages.
摘要:
A storage device including a storage medium for storing data in the form of topographic or magnetic marks. At least one probe is mounted on a common frame, the common frame and the storage medium designed for moving relative to each other for creating or detecting said marks. Each probe includes a tip facing the storage medium, a read sensing element, a write element and a capacitive platform, that forms a first electrode and is designed for a voltage potential applied to it independent from a control signal for said read sensing element and for said voltage potential applied to said capacitive platform being independent from a control signal for said write heating element. It further comprises a second electrode arranged in a fixed position relative to the storage medium forming a first capacitor together wherein said first electrode and a medium between the first and second electrode.
摘要:
A cantilever device for scanning a surface comprises a support, a tip platform and a flexible arm arrangement. The tip platform has a plurality of tips. These comprise at least two contact tips providing points of contact with a surface to be scanned, and a scanning tip for scanning the surface, where the scanning tip may be one of the two or more contact tips provided on the platform. The flexible arm arrangement connects the tip platform to the support and allows orientation of the platform, via flexing of the arm arrangement, to bring the contact tips into contact with a surface to be scanned. The platform is then at a well-defined orientation relative to the scan surface, and the scanning tip is appropriately positioned for the scanning operation. Scanning probe microscopes and data storage devices incorporating such cantilever devices are also provided.
摘要:
A storage device including a storage medium for storing data in the form of topographic or magnetic marks. At least one probe is mounted on a common frame, the common frame and the storage medium designed for moving relative to each other for creating or detecting said marks. Each probe includes a tip facing the storage medium, a read sensing element, a write element and a capacitive platform, that forms a first electrode and is designed for a voltage potential applied to it independent from a control signal for said read sensing element and for said voltage potential applied to said capacitive platform being independent from a control signal for said write heating element. It further comprises a second electrode arranged in a fixed position relative to the storage medium forming a first capacitor together wherein said first electrode and a medium between the first and second electrode.
摘要:
Provides semiconductor devices and method for fabricating devices having a high thermal dissipation efficiency. An example device comprises a thermally conducting structure attached to a surface of the semiconductor device via soldering. The thermally conducting structure is essentially formed of a thermally conducting material and comprises an array of freestanding fins, studs or frames, or a grid of connected fins. A process for fabricating such a semiconductor device includes forming a thermally conducting structure on a carrier and attaching the thermally conducting structure formed on the carrier to a surface of the semiconductor device via soldering.
摘要:
Described is a device for directing an optical signal from a first optical fiber (101, 102, . . . ) along one of a plurality of selectable switching paths each terminating in a corresponding one of a plurality of second optical fibers (401, 402, . . . ) via an optical element (201, 202, . . . ), the optical element (201, 202, . . . ) being moveable by a controllable actuator (60) from a first to a second position to change the switching path of incident optical signal. The optical element (201, 202, . . . ) is slideably mounted in parallel to a first mounting plate (10) comprising a conduit (11) through which the optical signals from the first optical fiber (101, 102, . . . ) can be directed by the optical element (201, 202, . . . ) along the selected one of the switching paths to one of a plurality of conduits (21) in a second mounting plate (20) parallel to the first mounting plate (10), and further to the corresponding one of second optical fibers (401, 402, . . . ).