摘要:
An improved and novel MRAM device with magnetic memory elements and circuitry for controlling magnetic memory elements is provided. The circuitry, for example, transistor (12a) having a gate (17a), a drain (18) and a source (16a) is integrated on a substrate (11) and coupled to a magnetic memory element (43) on the circuitry through a plug conductor (19a) and a conductor line (45). The circuitry is fabricated first under the CMOS process and then magnetic memory elements (43, 44). Digit line (29) and bit line (48) are placed under and on top of magnetic memory element (43), respectively, and enabled to access magnetic memory element (43). These lines are enclosed by a high permeability layer (31, 56, 58) excluding a surface facing magnetic memory element (43), which shields and focuses a magnetic field toward magnetic memory element (43).
摘要:
A new magnetic random access memory (MRAM) unit (30) is provided suitable for fabricating a MRAM device (20). The MRAM cell includes a magnetic storage element (32) and a current control element (33), for example, a diode, connected to the magnetic storage element in series to control a current in the magnetic storage element. The magnetic storage element has two magnetoresistive layers (36,38) separated by a non-magnetic layer (37), for example, aluminum oxide (Al.sub.2 O.sub.3). The diode allows a current to flow in only an MRAM cell activated by a column line and a row line.
摘要翻译:提供了适合于制造MRAM装置(20)的新的磁性随机存取存储器(MRAM)单元(30)。 MRAM单元包括串联连接到磁存储元件的磁存储元件(32)和电流控制元件(33),例如二极管,以控制磁存储元件中的电流。 磁存储元件具有由非磁性层(37)分隔的两个磁阻层(36,38),例如氧化铝(Al 2 O 3)。 二极管允许电流仅流过由列线和行线激活的MRAM单元。
摘要:
A method of fabricating semiconductor devices with a passivated surface includes providing first cap and etch stop layers and second cap and etch stop layers with a contact layer thereon so as to define an inter-electrode surface area. A first layer and an insulating layer, which are selectively etchable relative to each other, are deposited on the contact layer and the inter-electrode surface area. The insulating layer and the first layer are individually etched to define an electrode contact area and to expose the inter-electrode surface area. Portions of the first etch stop and cap layers remaining in the contact area are selectively removed and a metal contact is formed in the contact area in abutting engagement with the insulating layer so as to seal the inter-electrode surface area.
摘要:
A method of fabricating a self-aligned FET having a semi-insulating substrate of GaAs or InP with a conductive channel formed either by doping the surface or an epitaxially grown channel by molecular beam epitaxy or metalorganic vapor phase epitaxy in the substrate adjacent the surface. Forming a high temperature stable LaB.sub.6 /TiWN "T-shaped" Schottky gate contact on the substrate surface, which is used for source and drain ohmic region implants into the substrate adjacent to the surface and self-aligned to the "T-shaped" gate, with source and drain ohmic contacts also self-aligned with respect to the gate.
摘要:
A method of fabricating high breakdown voltage MESFETs forming a conduction channel in a GaAs substrate adjacent the surface, forming high temperature stable source and drain ohmic contacts and a Schottky gate contact on the surface of the substrate in overlying relationship to the channel and in spaced relationship, and depositing a layer of low temperature GaAs passivation material over the substrate surface and the source, drain and gate contacts. Openings are then etched in the passivation material for contacting the source, drain and gate contacts.
摘要:
A semiconductor laser (10) utilizes a material having a first band gap (26) for an active layer (13) of the laser (10). Monolayers (14) of a material having a smaller band gap are positioned in the active layer (13) without substantially altering the first band gap (26). The monolayers (14) have a combined thickness that is more than approximately 15 percent of the thickness (16) of the active layer (13).
摘要:
An improved and novel MRAM device with magnetic memory elements and circuitry for controlling magnetic memory elements is provided. The circuitry, for example, transistor (12a) having a gate (17a), a drain (18) and a source (16a) is integrated on a substrate (11) and coupled to a magnetic memory element (43) on the circuitry through a plug conductor (19a) and a conductor line (45). The circuitry is fabricated first under the CMOS process and then magnetic memory elements (43, 44). Digit line (29) and bit line (48) are placed under and on top of magnetic memory element (43), respectively, and enabled to access magnetic memory element (43). These lines are enclosed by a high permeability layer (31, 56, 58) excluding a surface facing magnetic memory element (43), which shields and focuses a magnetic field toward magnetic memory element (43).
摘要:
A magnetic memory cell with increased GMR ratio includes first and second layers of magnetic material stacked in parallel, overlying relationship and separated by a layer of non-magnetic material sandwiched between the first and second layers of magnetic material. Each of the first and second layers is switchable between a first and a second magnetic state and is formed to switch states with the application of a substantially equal magnetic field. A third layer of magnetic material is positioned adjacent one of the first and second layers of magnetic material so as to alter the amount of magnetic field required to switch the states of the one of the first and second layers of magnetic material. The third layer of magnetic material can be formed with a width larger than the cell width to increase the magnetic width of the cell and reduce the magnetic field required to switch states.
摘要:
A first layer of non-magnetic material is positioned on a layer of an oxide of a magnetic material (e.g. NiO). First and second layers of magnetic material are stacked in parallel, overlying relationship and separated by a second layer of non-magnetic material sandwiched therebetween to form a magnetic memory cell. The magnetic memory cell is positioned on the first layer of nonmagnetic material so as to sandwich the first nonmagnetic layer between the oxide and the first magnetic layer of the cell. The first layer of non-magnetic material has a thickness (e.g. approximately 7 .ANG.) which prevents the oxide from pinning the first layer of magnetic material and adapts the first layer of magnetic material to the layer of oxide so as to increase the GMR ratio of the magnetic memory cell.
摘要:
A multi-layer magnetic memory cell is provided, with magnetic vectors aligned along a length of the cell. To align the magnetic end vectors, an ellipsoidal shape is formed at the ends of the memory cell. Magnetic vectors aligned along the length prevent from forming high fields and magnetic poles at the discontinuity or ends of the layers. The memory cell with the ellipsoidal shape shows a constant magnetic resistance of the magnetic cell when a magnetic field is applied to the cell and attains a reduction of power consumption for the magnetic cell.