-
公开(公告)号:US11245068B2
公开(公告)日:2022-02-08
申请号:US16009035
申请日:2018-06-14
Applicant: Intel Corporation
Inventor: Chia-Ching Lin , Sasikanth Manipatruni , Tanay Gosavi , Dmitri Nikonov , Benjamin Buford , Kaan Oguz , John J. Plombon , Ian A. Young
Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
-
公开(公告)号:US20210408224A1
公开(公告)日:2021-12-30
申请号:US16914161
申请日:2020-06-26
Applicant: Intel Corporation
Inventor: Kaan Oguz , I-Cheng Tung , Chia-Ching Lin , Sou-Chi Chang , Matthew Metz , Uygar Avci
Abstract: A capacitor device, such as a metal insulator metal (MIM) capacitor includes a seed layer including tantalum, a first electrode on the seed layer, where the first electrode includes at least one of ruthenium or iridium and an insulator layer on the seed layer, where the insulator layer includes oxygen and one or more of Sr, Ba or Ti. In an exemplary embodiment, the insulator layer is a crystallized layer having a substantially smooth surface. A crystallized insulator layer having a substantially smooth surface facilitates low electrical leakage in the MIM capacitor. The capacitor device further includes a second electrode layer on the insulator layer, where the second electrode layer includes a second metal or a second metal alloy.
-
63.
公开(公告)号:US20210343856A1
公开(公告)日:2021-11-04
申请号:US17336149
申请日:2021-06-01
Applicant: Intel Corporation
Inventor: Nazila Haratipour , Sou-Chi Chang , Chia-Ching Lin , Jack Kavalieros , Uygar Avci , Ian Young
IPC: H01L29/51 , H01L29/15 , H01L29/221 , H01L29/94
Abstract: Described is a ferroelectric-based capacitor that improves reliability of a ferroelectric memory by providing tensile stress along a plane (e.g., x-axis) of a ferroelectric or anti-ferroelectric material of the ferroelectric/anti-ferroelectric based capacitor. Tensile stress is provided by a spacer comprising metal, semimetal, or oxide (e.g., metal or oxide of one or more of: Al, Ti, Hf, Si, Ir, or N). The tensile stress provides polar orthorhombic phase to the ferroelectric material and tetragonal phase to the anti-ferroelectric material. As such, memory window and reliability of the ferroelectric/anti-ferroelectric oxide thin film improves.
-
公开(公告)号:US20210305398A1
公开(公告)日:2021-09-30
申请号:US16833375
申请日:2020-03-27
Applicant: Intel Corporation
Inventor: Sou-Chi Chang , Chia-Ching Lin , Nazila Haratipour , Tanay Gosavi , I-Cheng Tung , Seung Hoon Sung , Ian Young , Jack Kavalieros , Uygar Avci , Ashish Verma Penumatcha
Abstract: A capacitor device includes a first electrode having a first metal alloy or a metal oxide, a relaxor ferroelectric layer adjacent to the first electrode, where the ferroelectric layer includes oxygen and two or more of lead, barium, manganese, zirconium, titanium, iron, bismuth, strontium, neodymium, potassium, or niobium and a second electrode coupled with the relaxor ferroelectric layer, where the second electrode includes a second metal alloy or a second metal oxide.
-
公开(公告)号:US10861861B2
公开(公告)日:2020-12-08
申请号:US16221083
申请日:2018-12-14
Applicant: Intel Corporation
Inventor: Chia-Ching Lin , Sasikanth Manipatruni , Tanay Gosavi , Dmitri Nikonov , Sou-Chi Chang , Uygar E. Avci , Ian A. Young
IPC: H01L27/11509 , H01L27/11592
Abstract: An embodiment includes a system comprising: first, second, third, fourth, fifth, and sixth layers, (a) the second, third, fourth, and fifth layers being between the first and sixth layers, and (b) the fourth layer being between the third and fifth layers; a formation between the first and second layers, the formation including: (a) a material that is non-amorphous; and (b) first and second sidewalls; a capacitor between the second and sixth layers, the capacitor including: (a) the third, fourth, and fifth layers, and (b) an electrode that includes the third layer and an additional electrode that includes the fifth layer; and a switching device between the first and sixth layers; wherein: (a) the first layer includes a metal and the sixth layer includes the metal, and (b) the fourth layer includes a Perovskite material. Other embodiments are addressed herein.
-
公开(公告)号:US20190386120A1
公开(公告)日:2019-12-19
申请号:US16009064
申请日:2018-06-14
Applicant: Intel Corporation
Inventor: Chia-Ching Lin , Sasikanth Manipatruni , Tanay Gosavi , Sou-Chi Chang , Dmitri Nikonov , Ian A. Young
Abstract: An apparatus is provided which comprises: a first stack comprising a magnetic insulating material (MI such as., EuS, EuO, YIG, TmIG, or GaMnAs) and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, or graphene; a second stack comprising an MI material and a TMD, wherein the first and second stacks are separated by an insulating material (e.g., oxide); a magnet (e.g., a ferromagnet or a paramagnet) adjacent to the TMDs of the first and second stacks, and also adjacent to the insulating material; and a magnetoelectric material (e.g., (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, or (SmBi)FeO3) adjacent to the magnet.
-
公开(公告)号:US20250169130A1
公开(公告)日:2025-05-22
申请号:US18515626
申请日:2023-11-21
Applicant: Intel Corporation
Inventor: Tao Chu , Minwoo Jang , Yanbin Luo , Paul Packan , Guowei Xu , Chiao-Ti Huang , Robin Chao , Feng Zhang , Ting-Hsiang Hung , Chia-Ching Lin , Yang Zhang , Kan Zhang , Chung-Hsun Lin , Anand S. Murthy
IPC: H01L29/06 , H01L21/8234 , H01L27/088 , H01L29/423 , H01L29/66
Abstract: Fabrication methods for integrated circuit (IC) structures and devices with different nanoribbon thicknesses are disclosed. In one example, an IC structure includes a stack of nanoribbons stacked above one another over the support, including a first nanoribbon with a first channel region and a second nanoribbon with a second channel region, where the first channel region has a first thickness and the second channel region has a second thickness, and where the first thickness of the first channel region is different (e.g., greater) than the second thickness of the second channel region.
-
公开(公告)号:US20250142948A1
公开(公告)日:2025-05-01
申请号:US18498318
申请日:2023-10-31
Applicant: Intel Corporation
Inventor: Robin Chao , Chiao-Ti Huang , Guowei Xu , Yang Zhang , Ting-Hsiang Hung , Tao Chu , Feng Zhang , Chia-Ching Lin , Anand S. Murthy , Conor P. Puls , Kan Zhang
IPC: H01L27/088 , H01L23/498 , H01L29/08 , H01L29/66 , H01L29/78
Abstract: An IC device with one or more transistors may also include one or more vias and jumpers for delivering power to the transistors. For instance, a via may be coupled to a power plane. A jumper may be connected to the via and an electrode of a transistor. With the via and jumper, an electrical connection is built between the power plane and the electrode. The via may be self-aligned. The IC device may include a dielectric structure at a first side of the via. A portion of the jumper may be at a second side of the via. The second side opposes the first side. The dielectric structure and the portion of the jumper may be over another dielectric structure that has a different dielectric material from the dielectric structure. The via may be insulated from another electrode of the transistor, which may be coupled to a ground plane.
-
公开(公告)号:US12266712B2
公开(公告)日:2025-04-01
申请号:US17133087
申请日:2020-12-23
Applicant: Intel Corporation
Inventor: Ashish Verma Penumatcha , Kevin O'Brien , Chelsey Dorow , Kirby Maxey , Carl Naylor , Tanay Gosavi , Sudarat Lee , Chia-Ching Lin , Seung Hoon Sung , Uygar Avci
IPC: H01L29/66 , H01L21/8234 , H01L29/06 , H01L29/24 , H01L29/423 , H10B61/00 , H10B63/00 , H10N50/85 , H10N50/10 , H10N50/80 , H10N70/00 , H10N70/20
Abstract: A transistor includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source structure coupled to a first end of the first and second channel layers, a drain structure coupled to a second end of the first and second channel layers, a gate structure between the source material and the drain material, and between the first channel layer and the second channel layer. The transistor further includes a spacer laterally between the gate structure and the and the source structure and between the gate structure and the drain structure. A liner is between the spacer and the gate structure. The liner is in contact with the first channel layer and the second channel layer and extends between the gate structure and the respective source structure and the drain structure.
-
公开(公告)号:US20250107212A1
公开(公告)日:2025-03-27
申请号:US18471705
申请日:2023-09-21
Applicant: Intel Corporation
Inventor: Yang Zhang , Guowei Xu , Tao Chu , Robin Chao , Chiao-Ti Huang , Feng Zhang , Ting-Hsiang Hung , Chia-Ching Lin , Anand Murthy
IPC: H01L29/49 , H01L21/28 , H01L21/78 , H01L29/06 , H01L29/417 , H01L29/423 , H01L29/66 , H01L29/775
Abstract: Techniques are provided to form an integrated circuit having an airgap spacer between at least a transistor gate structure and an adjacent source or drain contact. In one such example, a FET (field effect transistor) includes a gate structure that extends around a fin or any number of nanowires (or nanoribbons or nanosheets, as the case may be) of semiconductor material. The semiconductor material may extend in a first direction between source and drain regions while the gate structure extends over the semiconductor material in a second direction. Airgaps are provided in the regions between the gate structures and the adjacent source/drain contacts. The airgaps have a low dielectric constant (e.g., around 1.0) to reduce the parasitic capacitance between the conductive structures.
-
-
-
-
-
-
-
-
-