摘要:
Methods for filling high aspect ratio vias with conductive material. At least one high aspect ratio via is formed in the backside of a semiconductor substrate. The at least one via is closed at one end by a conductive element forming a conductive structure of the semiconductor substrate. The backside of the semiconductor substrate is exposed to an electroplating solution containing a conductive material in solution with the active surface semiconductor substrate isolated therefrom. An electric potential is applied across the conductive element through the electroplating solution and a conductive contact pad in direct or indirect electrical communication with the conductive element at the closed end of the at least one via (or forming such conductive element) to cause conductive material to electrochemically deposit from the electroplating solution and fill the at least one via. Semiconductor devices and in-process semiconductor devices are also disclosed.
摘要:
An interconnect for testing a semiconductor component includes a substrate, and interconnect contacts on the substrate configured to electrically engage component contacts on a semiconductor component. Each interconnect contact includes a compliant conductive layer formed as a conductive spring element. In addition, the complaint conductive layer includes a tip for engaging the component contact and a spring segment portion for resiliently supporting the tip. A method for fabricating the interconnect includes the steps of shaping the substrate, forming a conductive layer on a shaped portion of the substrate and removing at least some of the shaped portion. The shaped portion can comprise a raised step or dome, or a shaped recess in the substrate. The conductive layer can comprise a metal, a conductive polymer or a polymer tape can include a penetrating structure or penetrating particles. The interconnect can be used to construct wafer level test systems, and die level test systems as well, for semiconductor components such as wafers, dice and packages.
摘要:
Methods for forming interconnects in microfeature workpieces, and microfeature workpieces having such interconnects are disclosed herein. In one embodiment, a method of forming an interconnect in a microfeature workpiece includes forming a hole extending through a terminal and a dielectric layer to at least an intermediate depth in a substrate of a workpiece. The hole has a first lateral dimension in the dielectric layer and a second lateral dimension in the substrate proximate to an interface between the dielectric layer and the substrate. The second lateral dimension is greater than the first lateral dimension. The method further includes constructing an electrically conductive interconnect in at least a portion of the hole and in electrical contact with the terminal.
摘要:
Microelectronic imager assemblies with optical devices having integral reference features and methods for assembling such microelectronic imagers is disclosed herein. In one embodiment, the imager assembly can include a workpiece with a substrate having a front side, a back side, and a plurality of imaging dies on and/or in the substrate. The imaging dies include image sensors, integrated circuitry operatively coupled to the image sensors, and external contacts electrically coupled to the integrated circuitry. The assembly also includes optics supports on the workpiece. The optics supports have openings aligned with corresponding image sensors and first interface features at reference locations relative to corresponding image sensors. The assembly further includes optical devices having optics elements and second interface features seated with corresponding first interface features to position the optics elements at a desired location relative to corresponding image sensors.
摘要:
Microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging die can include a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends partially through the substrate and is in contact with the bond-pad. The interconnect can include a passage extending partially through the substrate to the bond-pad, a dielectric liner deposited into the passage and in contact with the substrate, a conductive layer deposited onto at least a portion of the dielectric liner, a wetting agent deposited onto at least a portion of the conductive layer, and a conductive fill material deposited into the passage and electrically coupled to the bond-pad.
摘要:
Microelectronic devices and methods for filling vias and forming conductive interconnects in microfeature workpieces and dies are disclosed herein. In one embodiment, a method includes providing a microfeature workpiece having a plurality of dies and at least one passage extending through the microfeature workpiece from a first side of the microfeature workpiece to an opposite second side of the microfeature workpiece. The method can further include forming a conductive plug in the passage adjacent to the first side of the microelectronic workpiece, and depositing conductive material in the passage to at least generally fill the passage from the conductive plug to the second side of the microelectronic workpiece.
摘要:
Methods for forming interconnects in microfeature workpieces, and microfeature workpieces having such interconnects are disclosed herein. In one embodiment, a method of forming an interconnect in a microfeature workpiece includes forming a hole extending through a terminal and a dielectric layer to at least an intermediate depth in a substrate of a workpiece. The hole has a first lateral dimension in the dielectric layer and a second lateral dimension in the substrate proximate to an interface between the dielectric layer and the substrate. The second lateral dimension is greater than the first lateral dimension. The method further includes constructing an electrically conductive interconnect in at least a portion of the hole and in electrical contact with the terminal.
摘要:
Methods for forming interconnects in blind holes and microelectronic workpieces having such interconnects are disclosed herein. One aspect of the invention is directed toward a method for manufacturing a microelectronic workpiece having microelectronic dies with integrated circuits and terminals electrically coupled to the integrated circuits. In one embodiment, the method includes forming a blind hole in the workpiece. The blind hole extends from a first exterior side of the workpiece to an intermediate depth in the workpiece. The method continues by forming a vent in the workpiece. The vent is in fluid communication with the blind hole. The method further includes constructing an electrically conductive interconnect in at least a portion of the blind hole.
摘要:
Methods for forming interconnects in blind vias or other types of holes, and microelectronic workpieces having such interconnects. The blind vias can be formed by first removing the bulk of the material from portions of the back side of the workpiece without thinning the entire workpiece. The bulk removal process, for example, can form a first opening that extends to an intermediate depth within the workpiece, but does not extend to the contact surface of the electrically conductive element. After forming the first opening, a second opening is formed from the intermediate depth in the first opening to the contact surface of the conductive element. The second opening has a second width less than the first width of the first opening. This method further includes filling the blind vias with a conductive material and subsequently thinning the workpiece from the exterior side until the cavity is eliminated.
摘要:
Microelectronic imagers, methods for packaging microelectronic imagers, and methods for forming electrically conductive through-wafer interconnects in microelectronic imagers are disclosed herein. In one embodiment, a microelectronic imaging die can include a microelectronic substrate, an integrated circuit, and an image sensor electrically coupled to the integrated circuit. A bond-pad is carried by the substrate and electrically coupled to the integrated circuit. An electrically conductive through-wafer interconnect extends through the substrate and is in contact with the bond-pad. The interconnect can include a passage extending completely through the substrate and the bond-pad, a dielectric liner deposited into the passage and in contact with the substrate, first and second conductive layers deposited onto at least a portion of the dielectric liner, and a conductive fill material deposited into the passage over at least a portion of the second conductive layer and electrically coupled to the bond-pad.