Abstract:
Apparatus and methods of operating a memory include storing a value of an attribute of a feature vector to a pair of memory cells by programming each of the memory cells to a respective data state of three or more data states, searching for an exact match to a particular value of the attribute by applying respective voltage levels to control gates of the memory cells to activate both memory cells only when the value of the attribute is the particular value, and searching for an inexact match to the particular value of the attribute by applying respective voltage levels to control gates of the memory cells to activate both memory cells when the value of the attribute is within a range of possible values of the attribute including the particular value.
Abstract:
Apparatus and methods of operating a memory include storing a value of an attribute of a feature vector to a pair of memory cells by programming each of the memory cells to a respective data state of three or more data states, searching for an exact match to a particular value of the attribute by applying respective voltage levels to control gates of the memory cells to activate both memory cells only when the value of the attribute is the particular value, and searching for an inexact match to the particular value of the attribute by applying respective voltage levels to control gates of the memory cells to activate both memory cells when the value of the attribute is within a range of possible values of the attribute including the particular value.
Abstract:
Methods for operating a distributed controller system in a memory device include receiving a read command, a master controller generating an indication to a data cache controller in response to the read command, and the data cache controller accepting data from a memory array of the memory device in response to the indication.
Abstract:
Memory devices and methods are disclosed. One such method compares input data to stored data in a memory device and includes applying a first weight factor to a first string of memory cells coupled to a data line, where a first bit of the stored data is stored in the first string of memory cells; applying a second weight factor to a second string of memory cells coupled to the data line, where a second bit of the stored data is stored in the second string of memory cells; comparing a first bit of input data to the first bit of the stored data while the first weight factor is applied to the first string of memory cells; and comparing a second bit of the input data to the second bit of the stored data while the second weight factor is applied to the second string of memory cells.
Abstract:
A bus controller has a displacer, an arithmetic logic unit coupled to the displacer, and a replacer selectively coupled to the displacer and the arithmetic logic unit.
Abstract:
A memory device might include control circuitry configured to cause the memory device to compare input data to data stored in memory cells connected to a data line, cause a first level of current to flow from the data line in response to a mismatch between one digit of the input data and data stored in a respective pair of memory cells, cause a second level of current to flow from the data line in response to a mismatch between a different digit of the input data and the data stored in a respective pair of memory cells, compare a representation of a level of current in the data line to a reference, and deem the input data to potentially match or not match the data stored in the plurality of memory cells in response to the comparison.
Abstract:
A memory device includes a plurality of memory dies, each memory die of the plurality of memory dies comprising a memory array and control logic. The control logic comprises a plurality of processing threads to execute memory access operations on the memory array concurrently, a thread selection component to identify one or more processing threads of the plurality of processing threads for a power management cycle of the associated memory die and a power management component to determine an amount of power associated with the one or more processing threads and request the amount of power during the power management cycle.
Abstract:
Memories might include control logic configured to cause the memory to perform a first sense operation having an initial phase and a plurality of sensing phases on a first grouping of memory cells, pause the first sense operation upon completion of a present sensing phase in response to receiving a command to perform a second sense operation on a second grouping of memory cells while performing the present sensing phase, perform an initial phase of the second sense operation after pausing the first sense operation, and, in response to completion of the initial phase of the second sense operation, resume the first sense operation at a next subsequent sensing phase of the plurality of sensing phases and continue to a sensing phase of the second sense operation to perform the next subsequent sensing phase of the first sense operation and the sensing phase of the second sense operation concurrently.
Abstract:
Memory having a controller configured to cause the memory to determine a respective raw data value of a plurality of possible raw data values for each memory cell of a plurality of memory cells, count occurrences of each raw data value for a first set of memory cells of the plurality of memory cells, store a cumulative number of occurrences for each raw data value, determine a plurality of valleys of the stored cumulative number of occurrences for each raw data value with each valley corresponding to a respective raw data value of the plurality of possible raw data values, and, for each memory cell of a second set of memory cells of the plurality of memory cells, determine a data value for that memory cell in response to the raw data value for that memory cell and the respective raw data values of the plurality of valleys.
Abstract:
Apparatus including an array of memory cells, a plurality of access lines each corresponding to a respective plurality of memory cells of the array of memory cells and each connected to a control gate of each memory cell of its respective plurality of memory cells; and a controller for access of the array of memory cells that is configured to cause the apparatus to apply a particular voltage level to a particular access line of the plurality of access lines, and determine a value indicative of a number of memory cells of the respective plurality of memory cells for the particular access line that are activated in response to applying the particular voltage level. The controller might further be configured to determine an expected data age of the respective plurality of memory cells, and/or determine a plurality of read voltages for reading the respective plurality of memory cells.