Abstract:
Methods of operating a memory device applying a programming pulse having a plurality of different voltage levels to an access line coupled to a plurality of memory cells, enabling a particular memory cell of the plurality of memory cells for programming while the programming pulse has a particular voltage level of the plurality of different voltage levels, and, after enabling the particular memory cell for programming, inhibiting the particular memory cell from programming while the programming pulse has a second voltage level of the plurality of different voltage levels, different than the particular voltage level.
Abstract:
Memories and methods for programming memories with multi-step programming pulses are provided. One method includes applying a plurality of programming pulses to cells of the memory device to be programmed, with each programming pulse of the plurality of programming pulses being configured to contribute towards programming a cell of the plurality of cells to each data state of a plurality of programmed data states. A first portion of each programming pulse is used to program certain cells towards a target data state associated with a first threshold voltage level, and a later portion of each programming pulse is used to program other cells towards a target data state associated with a second threshold voltage level that is lower than the first threshold voltage level.
Abstract:
Methods of operating a memory include receiving a plurality of digits of data, determining a value of the plurality of digits of data, and selecting a function to represent the value of the plurality of digits of data. The selected function is a function of a cell number of each memory cell within a grouping of memory cells. The methods further include determining a desired threshold voltage of a particular memory cell of the grouping of memory cells corresponding to the value of the selected function for the cell number of the particular memory cell, and programming the particular memory cell to its desired threshold voltage.
Abstract:
The present disclosure includes apparatuses and methods for memory system data management. A number of embodiments include writing data from a host to a buffer in the memory system, receiving, at the buffer, a notification from a memory device in the memory system that the memory device is ready to receive data, sending at least a portion of the data from the buffer to the memory device, and writing the portion of the data to the memory device.
Abstract:
Apparatuses and methods for reducing read disturb are described herein. An example apparatus may include a first memory subblock including a first select gate drain (SGD) switch and a first select gate source (SGS) switch, a second memory subblock including a second SGD switch and a second SGS switch, and an access line associated with the first and second memory subblocks. The apparatus may include a control unit configured to enable the first and second SGD switches and the first and second SGS switches during a first portion of a read operation and to provide a first voltage on the access line during the first portion. The control unit may be configured to disable the first SGD switch and the first SGS switches during a second portion of the read operation and to provide a second voltage on the access line during the second portion.
Abstract:
Some embodiments include apparatuses having a switch regulator that includes a first circuit with a first comparator to compare an output of the switch regulator to a first reference voltage, and to provide a control signal to enable or disable a first pass element based on the comparison. The switch regulator includes at least a second circuit having a second comparator to compare an output of the switch regulator to a second reference voltage that is lower than the first reference voltage, and to provide a control signal to enable or disable a second pass element based on the comparison. The switch regulator does not include Miller compensation circuits. Other apparatuses and methods according to other embodiments are described.
Abstract:
The present invention discloses a level-shifting circuit to provide an initial stage to a differential amplifier circuit, a differential amplifier circuit, and a method of operating same. An example level-shifting circuit includes a first transistor and a second transistor to receive a first differential amplifier input. The first transistor has a drain receiving a power input, and the second transistor has a drain coupled to a source of the first transistor and a source coupled to a biased tail circuit. The example level-shifting circuit further includes a third transistor and a fourth transistor to receive a second differential amplifier input. The third transistor has a drain receiving a power input and the fourth transistor has a drain coupled to a source of the third transistor and a source coupled to the biased tail circuit. Other examples, methods, and apparatuses are described herein.
Abstract:
Apparatuses and methods for threshold voltage (Vt) distribution determination are described. A number of apparatuses can include sense circuitry configured to determine a first current on a source line of an array of memory cells, the first current corresponding to a first quantity of memory cells of a group of memory cells that conducts in response to a first sensing voltage applied to an access line and determine a second current on the source line, the second current corresponding to a second quantity of memory cells of the group that conducts in response to a second sensing voltage applied to the access line. The number of apparatuses can include a controller configured to determine at least a portion of a Vt distribution corresponding to the group of memory cells based, at least in part, on the first current and the second current.
Abstract:
Apparatuses and methods for providing power responsive a power loss are disclosed herein. A power chip may comprise a power sensor, a write command control logic, and an array. The power sensor may be configured to detect a power loss of a power supply and provide a power loss control signal responsive, at least in part, to detecting the power loss of the power supply. The write command control logic may be coupled to the power sensor and may be configured to receive the power loss control signal. The write command control logic may be further configured to provide a write command responsive, at least in part, to receipt of the power loss control signal. The array may include a plurality of capacitors configured to store power and further configured to provide power during the power loss.
Abstract:
A memory device includes a content addressable memory (CAM) block storing a plurality of stored search keys. The memory device further includes control logic that determines a first number of memory cells in at least one string of the CAM block storing one of the plurality of stored search keys, the first number of memory cells storing a first logical value, and stores a calculated parity value representing the first number of memory cells in a page cache associated with the CAM block. The control logic further reads stored parity data from one or more memory cells in the at least one string, the one or more memory cells connected to one or more additional wordlines in the CAM block, and compares the calculated parity value to the stored parity data to determine whether an error is present in the one of the plurality of stored search keys in the CAM block.