摘要:
A Raman signal-enhancing structure includes a substrate and a plurality of protrusions located at predetermined positions relative to a surface of the substrate. Each protrusion includes a Raman signal-enhancing material and has cross-sectional dimensions of less than about 50 nanometers. The structure also includes an edge that includes an intersection between two nonparallel surfaces of at least one protrusion. A Raman spectroscopy system includes such a Raman signal-enhancing structure, and Raman spectroscopy may be performed on an analyte using such structures and systems. A method for forming such a Raman signal-enhancing structure includes nanoimprint lithography.
摘要:
A scattering spectroscopy nanosensor includes a nanoscale-patterned sensing substrate to produce an optical scattering response signal indicative of a presence of an analyte when interrogated by an optical stimulus. The scattering spectroscopy nanosensor further includes a protective covering to cover and protect the nanoscale-patterned sensing substrate. The protective covering is to be selectably removed by exposure to an optical beam incident on the protective covering. The protective covering is to prevent the analyte from interacting with the nanoscale-patterned sensing substrate prior to being removed.
摘要:
A resonant cavity with tunable nanowire. The resonant cavity includes a substrate. The substrate is coupleable to an optical resonator structure. The resonant cavity also includes a plurality of nanowires formed on the substrate. The plurality of nanowires is actuated in response to an application of energy.
摘要:
An electromagnetic wave receiving antenna includes a spiral element configured to selectively attenuate electromagnetic waves having a predetermined wavelength, selected wavelengths, or range of wavelengths, and to concentrate electromagnetic waves having a predetermined wavelength, selected wavelengths, or range of wavelengths other than the attenuated wavelengths.
摘要:
Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.
摘要:
A Fresnel antenna includes a plurality of Fresnel elements spaced to selectively attenuate electromagnetic waves having a predetermined wavelength, selected wavelengths, or range of wavelengths, and to concentrate electromagnetic waves having a predetermined wavelength, selected wavelengths, or range of wavelengths other than the attenuated wavelengths.
摘要:
Various embodiments of the present invention are directed to external, electronically controllable, negative index material-based modulators. In one aspect, an external modulator comprises a negative index material in electronic communication with an electronic signal source. The negative index material receives an electronic signal encoding data from the electronic signal source and an unmodulated carrier wave from an electromagnetic radiation source. Magnitude variations in the electronic signal produce corresponding effective refractive index changes in the negative index material encoding the data in the amplitude and/or phase of the carrier wave to produce an electromagnetic signal.
摘要:
Various embodiments of the present invention are directed to nanowire-based photodetectors that can be used to convert information encoded in a channel of electromagnetic radiation into a photocurrent encoding the same information. In one embodiment of the present invention, a photodetector comprises a waveguide configured to transmit one or more channels of electromagnetic radiation. The photodetector includes a first terminal and a second terminal. The first terminal and the second terminal are positioned on opposite sides of the waveguide. The photodetector also includes a number of nanowires. Each nanowire interconnects the first terminal to the second terminal and a portion of each nanowire is embedded in the waveguide.
摘要:
Apparatuses and methods for modulating electromagnetic radiation are disclosed. A plasmon waveguide including an array of metallic nanoparticles disposed on a dielectric substrate is provided. The plasmon waveguide is disposed on a MEMS structure. An electromagnetic radiation signal is applied to a tapered fiber disposed proximate the MEMS structure. The intensity of the electromagnetic radiation signal passing through the tapered fiber is modified by displacing a deformable member of the MEMS structure to modify a distance between the plasmon waveguide and the tapered fiber such that an evanescent field of the tapered fiber causes a plasmon resonance in the plasmon waveguide.
摘要:
Embodiments of the present invention are related to nanowire-based devices that can be configured and operated as modulators, chemical sensors, and light-detection devices. In one aspect, a nanowire-based device includes a reflective member, a resonant cavity surrounded by at least a portion of the reflective member, and at least one nanowire disposed within the resonant cavity. The nanowire includes at least one active segment selectively disposed along the length of the nanowire to substantially coincide with at least one antinode of light resonating within the cavity. The active segment can be configured to interact with the light resonating within the cavity.