摘要:
A heat dissipating package structure includes a chip carrier; a semiconductor chip mounted and electrically connected to the chip carrier; a heat spreader having a first surface, an opposed second surface and a hollow structure, the second surface of the heat spreader being mounted on the chip, wherein the chip is larger in size than the hollow structure such that the chip is partly exposed to the hollow structure; an encapsulant formed between the heat spreader and the chip carrier, for encapsulating the chip, wherein the first surface and sides of the heat spreader are exposed from the encapsulant to dissipate heat produced from the chip; and a plurality of conductive elements disposed on the chip carrier, for electrically connecting the chip to an external device. The present invention also provides a method for fabricating the heat dissipating package structure.
摘要:
A photosensitive semiconductor package with a support member and its fabrication method are provided. The support member having a receiving space is placed on an upper surface of a substrate. An encapsulation body is formed on the substrate and bonded with an outer wall of the support member. At least one chip is mounted on a predetermined area of the substrate exposed via the receiving space, and is electrically connected to the substrate. A light-permeable lid is attached to the support member and the encapsulation body to seal the receiving space. A plurality of solder balls or contact lands are formed on a lower surface of the substrate. By provision of the support member, there is no need to use an insert mold, such that the substrate would not be damaged by the insert mold, and bond fingers on the substrate would not be contaminated by the insert mold.
摘要:
A fabrication method of a semiconductor package with a photosensitive chip is provided. A substrate having a core is prepared. An interposer is mounted on the substrate, with a peripheral portion of the substrate exposed from the interposer. A molding process is performed and the substrate is clamped between an upper mold and a lower mold, with the interposer received in an upwardly-recessed cavity of the upper mold. A molding compound is injected into the upwardly-recessed cavity to form a dam on the peripheral portion of the substrate. Then the upper and lower molds and the interposer are removed from the substrate to expose area covered by the interposer on the substrate. At least one photosensitive chip is mounted on the exposed area of the substrate. A lid seals the dam such that the chip is received in a space defined by the substrate, the dam and the lid.
摘要:
A semiconductor package includes a substrate having a top surface and a bottom surface; at least one chip mounted on the top surface of the substrate and electrically connected to the substrate; a heat sink attached to the top surface of the substrate by an adhesive material applied therebetween; and a plurality of solder balls implanted on the bottom surface of the substrate. The heat sink has a flat portion and a support portion connected to the flat portion. The support portion has at least one recess portion facing toward the top surface of the substrate and at least one burr formed on an interior surface of the recess portion such that the adhesive material can fill the recess portion and submerge the burr to provide an anchoring effect to firmly secure the heat sink in position on the substrate.
摘要:
A semiconductor package with stacked chips is proposed, wherein at least two chips are stacked on a chip carrier in a stagger manner as to dispose a second chip on a first chip, and a supporting element is disposed on the second chip and dimensioned to cover area on the second chip with no support from the first chip. The supporting element provides support to the second chip, allowing bonding wires to be successfully connected to the second chip, without the occurrence of cracks of the second chip. The supporting element can be formed on its lower surface with protruding portions positioned outside edge sides of the second chip; this is to enhance structural strength of the supporting element, and help maintain the second chip intact in structure during wire bonding. The supporting element can further have its upper surface to be exposed to the atmosphere; this improves heat dissipating efficiency of the semiconductor package.
摘要:
A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires. The bump is used for supporting the leads to a certain height so as to keep the bonding wires from contacting the heating block and eliminate the need of using a second heating block in the second wire bonding process of the prior art, thereby saving time and costs in a fabrication process. Also, as positions where the first and second bonding wires are bonded to the leads on opposite sides of the leadframe correspond with each other, the conventional problems of adversely affected electrical performance and electrical mismatch can be prevented.
摘要:
A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires. The bump is used for supporting the leads to a certain height so as to keep the bonding wires from contacting the heating block and eliminate the need of using a second heating block in the second wire bonding process of the prior art, thereby saving time and costs in a fabrication process. Also, as positions where the first and second bonding wires are bonded to the leads on opposite sides of the leadframe correspond with each other, the conventional problems of adversely affected electrical performance and electrical mismatch can be prevented.
摘要:
A chip scale package structure and a method for fabricating the same are disclosed. The method includes forming metal pads on a predetermined part of a carrier; mounting chips on the carrier, each of the chips having a plurality of conductive bumps soldered to the metal pads; forming an encapsulant on the carrier to encapsulate the chips and the conductive bumps; removing the carrier to expose the metal pads and even the metal pads with a surface of the encapsulant; forming on the encapsulant a plurality of first conductive traces electrically connected to the metal pads; applying a solder mask on the first conductive traces, and forming a plurality of openings on the solder mask to expose a predetermined part of the first conductive traces; forming a plurality of conductive elements on the predetermined part; and cutting the encapsulant to form a plurality of chip scale package structures.
摘要:
A heat dissipating package structure includes a chip carrier; a semiconductor chip mounted and electrically connected to the chip carrier; a heat spreader having a first surface, an opposed second surface and a hollow structure, the second surface of the heat spreader being mounted on the chip, wherein the chip is larger in size than the hollow structure such that the chip is partly exposed to the hollow structure; an encapsulant formed between the heat spreader and the chip carrier, for encapsulating the chip, wherein the first surface and sides of the heat spreader are exposed from the encapsulant to dissipate heat produced from the chip; and a plurality of conductive elements disposed on the chip carrier, for electrically connecting the chip to an external device. The present invention also provides a method for fabricating the heat dissipating package structure.
摘要:
A semiconductor package and a fabrication method are disclosed. The fabrication method includes applying a sacrificial layer on one surface of a metal carrier, applying an insulation layer on the sacrificial layer, and forming through holes in the sacrificial layer and the insulation layer to expose the metal carrier; forming a conductive metallic layer in each through hole; forming a patterned circuit layer on the insulation layer to be electrically connected to the conductive metallic layer; mounting at least a chip on the insulation layer and electrically connecting the chip to the patterned circuit layer; forming an encapsulant to encapsulate the chip and the patterned circuit layer; and removing the metal carrier and the sacrificial layer to expose the insulation layer and conductive metallic layer to allow the conductive metallic layer to protrude from the insulation layer. In the present invention, the distance between the semiconductor package and the external device is increased, and thermal stress caused by difference between the thermal expansion coefficients is reduced, so as to enhance the reliability of the product.