Abstract:
A method for fabricating a fin field effect transistor (finFET) device with a strained channel. During fabrication, after the fin is formed, a sacrificial epitaxial gate stressor is deposited on the fin, causing strain in the fin. SD structures are then formed to anchor the ends of the fin, and the sacrificial epitaxial gate stressor is removed.
Abstract:
A method for fabricating a fin field effect transistor (finFET) device with a strained channel. During fabrication, after the fin is formed, a dummy gate is deposited on the fin, and processed, e.g., by plasma doping and annealing, to cause stress in the dummy gate. Deep source drain (SD) recesses are formed, resulting in strain in the channel, and SD structures are formed to anchor the ends of the fin. The dummy gate is then removed.
Abstract:
A method of manufacturing a nanosheet or nanowire device from a stack including an alternating arrangement of sacrificial layers and channel layers on a substrate. The method includes deep etching portions of the stack to form electrode recesses for a source electrode and a drain electrode, forming conductive passivation layers in the electrode recesses, and epitaxially growing the source and drain electrodes in the electrode recesses. Each conductive passivation layer extends at least partially along a side of one of the electrode recesses. Portions of the substrate at lower ends of the electrode recesses are uncovered by the conductive passivation layers. The source and drain electrodes are grown from the substrate and the conductive passivation layers substantially inhibit the source and drain electrodes from being grown from the channel layers.
Abstract:
A semiconductor structure includes a first finFET device including a first fin, a first gate electrode structure on sidewalls and an upper surface of the first fin, a first channel region beneath the first gate electrode structure, and first source and drain regions in the first fin on opposite sides of the first channel region, and a second finFET device including a second fin, a second gate electrode structure on sidewalls and an upper surface of the second fin, a second channel region beneath the second gate electrode structure, and second source and drain regions in the second fin on opposite sides of the second channel region. The second gate electrode structure has a second physical gate length that is substantially the same as a first physical gate length of the first gate electrode structure, and the second finFET device has a second effective channel length that is different from a first effective channel length of the first gate electrode structure.
Abstract:
Integrated circuit devices including contacts and methods of forming the same are provided. The devices may include a fin on a substrate, a gate structure on the fin and a source/drain region in the fin at a side of the gate structure. The devices may further include a contact plug covering an uppermost surface of the source/drain region and a sidewall of the gate structure. The contact plug may include an inner portion including a first material and an outer portion including a second material different from the first material. The outer portion may at least partially cover a sidewall of the inner portion, and a portion of the outer portion may be disposed between the sidewall of the gate structure and the sidewall of the inner portion.
Abstract:
Exemplary embodiments provide methods and systems for fabricating a metal source-drain stressor in a MOS device channel having improved tensile stress. Aspects of exemplary embodiment include forming a recess in source and drain areas; forming a metal contact layer on surfaces of the recess that achieves low contact resistivity; forming a metallic diffusion barrier over the metal contact layer; forming a layer M as an intimate mixture of materials A and B that substantially fills the recess; capping the layer M with a capping layer so that layer M is fully encapsulated and the capping layer prevents diffusion of A and B; and forming a compound AxBy within the layer M via a thermal reaction resulting in a reacted layer M comprising the metal source-drain stressor.
Abstract:
Exemplary embodiments provide for fabricating a biaxially strained nanosheet. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial superlattice having one or more periods, each of the periods comprising at least three layers, an active material layer, a first sacrificial material layer and a second sacrificial material layer, the first and second sacrificial material layers having different material properties; in each of the one or more periods, placing each of the active material layers between the first and second sacrificial material layers, wherein lattice constants of the first and second sacrificial material layers are different than the active material layer and impose biaxial stress in the active material layer; selectively etching away all of the first sacrificial material layers thereby exposing one surface of the active material for additional processing, while the biaxial strain in the active material layers is maintained by the second sacrificial material layers; and selectively etching away all of the second sacrificial material layers thereby exposing a second surface of the active material layers for additional processing.
Abstract:
A field effect transistor (FET) includes a nanosheet stack having first and second stacked semiconductor channel layers. The first channel layer defines a channel region of a tunnel FET, and the second channel layer defines a channel region of a thermionic FET. Source and drain regions are provided on opposite sides of the nanosheet stack such that the first and second channel layers extend therebetween. A first portion of the source region adjacent the first channel layer and a second portion of the source region adjacent the second channel layer have opposite semiconductor conductivity types. Related fabrication and operating methods are also discussed.
Abstract:
A device including a stacked nanosheet field effect transistor (FET) may include a substrate, a first channel pattern on the substrate, a second channel pattern on the first channel pattern, a gate that is configured to surround portions of the first channel pattern and portions of the second channel pattern, and source/drain regions on opposing ends of the first channel pattern and second channel pattern. The first and second channel patterns may each include a respective plurality of nanosheets arranged in a respective horizontal plane that is parallel to a surface of the substrate. The nanosheets may be spaced apart from each other at a horizontal spacing distance between adjacent ones of the nanosheets. The second channel pattern may be spaced apart from the first channel pattern at a vertical spacing distance from the first channel pattern to the second channel pattern that is greater than the horizontal spacing distance.
Abstract:
A method of manufacturing an integrated circuit having buried power rails includes forming a first dielectric layer on an upper surface of a first semiconductor substrate, forming a series of power rail trenches in an upper surface of the first dielectric layer, forming the buried power rails in the series of power rail trenches, forming a second dielectric layer on the upper surface of the first dielectric layer and upper surfaces of the buried power rails, forming a third dielectric layer on a donor wafer, bonding the third dielectric layer to the second dielectric layer, and forming a series of semiconductor devices, vias, and metal interconnects on or in the donor wafer. The buried power rails are encapsulated by the first dielectric layer and the second dielectric layer, and the buried power rails are below the plurality of semiconductor devices.