Multiple channel length finFETs with same physical gate length
    64.
    发明授权
    Multiple channel length finFETs with same physical gate length 有权
    具有相同物理栅极长度的多通道长度finFET

    公开(公告)号:US09466669B2

    公开(公告)日:2016-10-11

    申请号:US14683926

    申请日:2015-04-10

    Abstract: A semiconductor structure includes a first finFET device including a first fin, a first gate electrode structure on sidewalls and an upper surface of the first fin, a first channel region beneath the first gate electrode structure, and first source and drain regions in the first fin on opposite sides of the first channel region, and a second finFET device including a second fin, a second gate electrode structure on sidewalls and an upper surface of the second fin, a second channel region beneath the second gate electrode structure, and second source and drain regions in the second fin on opposite sides of the second channel region. The second gate electrode structure has a second physical gate length that is substantially the same as a first physical gate length of the first gate electrode structure, and the second finFET device has a second effective channel length that is different from a first effective channel length of the first gate electrode structure.

    Abstract translation: 半导体结构包括第一鳍式FET器件,其包括第一鳍片,侧壁上的第一栅极电极结构和第一鳍片的上表面,第一栅电极结构下方的第一沟道区域,第一鳍片中的第一源极和漏极区域 在第一沟道区域的相对侧上,以及第二鳍状FET器件,其包括第二鳍片,侧壁上的第二栅电极结构和第二鳍片的上表面,第二栅电极结构下方的第二沟道区域,以及第二源极和 第二鳍片的漏极区域在第二沟道区域的相对侧上。 第二栅极电极结构具有与第一栅极电极结构的第一物理栅极长度基本相同的第二物理栅极长度,并且第二finFET器件具有与第一栅极电极结构的第一有效沟道长度不同的第二有效沟道长度 第一栅电极结构。

    Integrated circuit devices including contacts and methods of forming the same
    65.
    发明授权
    Integrated circuit devices including contacts and methods of forming the same 有权
    集成电路器件,包括触点及其形成方法

    公开(公告)号:US09431492B2

    公开(公告)日:2016-08-30

    申请号:US14628541

    申请日:2015-02-23

    Abstract: Integrated circuit devices including contacts and methods of forming the same are provided. The devices may include a fin on a substrate, a gate structure on the fin and a source/drain region in the fin at a side of the gate structure. The devices may further include a contact plug covering an uppermost surface of the source/drain region and a sidewall of the gate structure. The contact plug may include an inner portion including a first material and an outer portion including a second material different from the first material. The outer portion may at least partially cover a sidewall of the inner portion, and a portion of the outer portion may be disposed between the sidewall of the gate structure and the sidewall of the inner portion.

    Abstract translation: 提供了包括触点的集成电路装置及其形成方法。 器件可以包括衬底上的翅片,翅片上的栅极结构和栅极结构侧的鳍中的源极/漏极区域。 所述装置还可以包括覆盖源极/漏极区域的最上表面和栅极结构的侧壁的接触插塞。 接触插塞可以包括包括第一材料的内部部分和包括不同于第一材料的第二材料的外部部分。 外部部分可以至少部分地覆盖内部部分的侧壁,并且外部部分的一部分可以设置在门结构的侧壁和内部部分的侧壁之间。

    FABRICATING METAL SOURCE-DRAIN STRESSOR IN A MOS DEVICE CHANNEL
    66.
    发明申请
    FABRICATING METAL SOURCE-DRAIN STRESSOR IN A MOS DEVICE CHANNEL 有权
    在MOS器件通道中制造金属源 - 压应力器

    公开(公告)号:US20160133745A1

    公开(公告)日:2016-05-12

    申请号:US14934045

    申请日:2015-11-05

    Abstract: Exemplary embodiments provide methods and systems for fabricating a metal source-drain stressor in a MOS device channel having improved tensile stress. Aspects of exemplary embodiment include forming a recess in source and drain areas; forming a metal contact layer on surfaces of the recess that achieves low contact resistivity; forming a metallic diffusion barrier over the metal contact layer; forming a layer M as an intimate mixture of materials A and B that substantially fills the recess; capping the layer M with a capping layer so that layer M is fully encapsulated and the capping layer prevents diffusion of A and B; and forming a compound AxBy within the layer M via a thermal reaction resulting in a reacted layer M comprising the metal source-drain stressor.

    Abstract translation: 示例性实施例提供了在具有改善的拉伸应力的MOS器件通道中制造金属源极 - 漏极应力器的方法和系统。 示例性实施例的方面包括在源极和漏极区域中形成凹部; 在凹陷的表面上形成接触电阻率低的金属接触层; 在金属接触层上形成金属扩散阻挡层; 形成层M作为基本上填充凹部的材料A和B的紧密混合物; 用覆盖层覆盖层M,使得层M被完全封装,并且覆盖层防止A和B的扩散; 以及通过热反应在层M内形成化合物AxBy,导致包含金属源 - 漏应力源的反应层M。

    STRAINED STACKED NANOSHEET FETS AND/OR QUANTUM WELL STACKED NANOSHEET
    67.
    发明申请
    STRAINED STACKED NANOSHEET FETS AND/OR QUANTUM WELL STACKED NANOSHEET 有权
    应变堆叠的纳米晶体管和/或量子堆积的纳米硅片

    公开(公告)号:US20160111337A1

    公开(公告)日:2016-04-21

    申请号:US14887484

    申请日:2015-10-20

    Abstract: Exemplary embodiments provide for fabricating a biaxially strained nanosheet. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial superlattice having one or more periods, each of the periods comprising at least three layers, an active material layer, a first sacrificial material layer and a second sacrificial material layer, the first and second sacrificial material layers having different material properties; in each of the one or more periods, placing each of the active material layers between the first and second sacrificial material layers, wherein lattice constants of the first and second sacrificial material layers are different than the active material layer and impose biaxial stress in the active material layer; selectively etching away all of the first sacrificial material layers thereby exposing one surface of the active material for additional processing, while the biaxial strain in the active material layers is maintained by the second sacrificial material layers; and selectively etching away all of the second sacrificial material layers thereby exposing a second surface of the active material layers for additional processing.

    Abstract translation: 示例性实施例提供制造双轴应变纳米片。 示例性实施例的方面包括:生长具有一个或多个周期的外延晶体初始超晶格,每个周期包括至少三个层,活性材料层,第一牺牲材料层和第二牺牲材料层,第一和第二 具有不同材料特性的牺牲材料层; 在一个或多个周期的每一个中,将每个活性材料层放置在第一和第二牺牲材料层之间,其中第一和第二牺牲材料层的晶格常数不同于活性材料层并且在活性物质层中施加双轴应力 材料层; 选择性地蚀刻掉所有的第一牺牲材料层,从而暴露活性材料的一个表面以进行附加处理,同时活性材料层中的双轴应变由第二牺牲材料层保持; 并且选择性地蚀刻掉所有第二牺牲材料层,从而暴露活性材料层的第二表面用于额外的处理。

    NANOSHEET FETS WITH STACKED NANOSHEETS HAVING SMALLER HORIZONTAL SPACING THAN VERTICAL SPACING FOR LARGE EFFECTIVE WIDTH
    69.
    发明申请
    NANOSHEET FETS WITH STACKED NANOSHEETS HAVING SMALLER HORIZONTAL SPACING THAN VERTICAL SPACING FOR LARGE EFFECTIVE WIDTH 有权
    具有小型水平间隔的堆叠纳米结构的纳米结构FET与大幅有效宽度的垂直间距

    公开(公告)号:US20150364546A1

    公开(公告)日:2015-12-17

    申请号:US14722402

    申请日:2015-05-27

    Abstract: A device including a stacked nanosheet field effect transistor (FET) may include a substrate, a first channel pattern on the substrate, a second channel pattern on the first channel pattern, a gate that is configured to surround portions of the first channel pattern and portions of the second channel pattern, and source/drain regions on opposing ends of the first channel pattern and second channel pattern. The first and second channel patterns may each include a respective plurality of nanosheets arranged in a respective horizontal plane that is parallel to a surface of the substrate. The nanosheets may be spaced apart from each other at a horizontal spacing distance between adjacent ones of the nanosheets. The second channel pattern may be spaced apart from the first channel pattern at a vertical spacing distance from the first channel pattern to the second channel pattern that is greater than the horizontal spacing distance.

    Abstract translation: 包括堆叠的纳米片场效应晶体管(FET)的器件可以包括衬底,衬底上的第一沟道图案,第一沟道图案上的第二沟道图案,被配置为围绕第一沟道图案的部分的栅极和部分 的第二沟道图案和第一沟道图案和第二沟道图案的相对端上的源极/漏极区域。 第一和第二通道图案可以各自包括布置在平行于基板的表面的相应水平平面中的相应的多个纳米片。 纳米片可以在相邻的纳米片之间的水平间隔距离处彼此间隔开。 第二通道图案可以与第一通道图案间隔开距离第一通道图案到第二通道图案的垂直间隔距离大于水平间隔距离。

    Integrated circuit with buried power rail and methods of manufacturing the same

    公开(公告)号:US12230570B2

    公开(公告)日:2025-02-18

    申请号:US17574073

    申请日:2022-01-12

    Abstract: A method of manufacturing an integrated circuit having buried power rails includes forming a first dielectric layer on an upper surface of a first semiconductor substrate, forming a series of power rail trenches in an upper surface of the first dielectric layer, forming the buried power rails in the series of power rail trenches, forming a second dielectric layer on the upper surface of the first dielectric layer and upper surfaces of the buried power rails, forming a third dielectric layer on a donor wafer, bonding the third dielectric layer to the second dielectric layer, and forming a series of semiconductor devices, vias, and metal interconnects on or in the donor wafer. The buried power rails are encapsulated by the first dielectric layer and the second dielectric layer, and the buried power rails are below the plurality of semiconductor devices.

Patent Agency Ranking