摘要:
The present invention provides a semiconductor light receiving element capable of reducing capacity while minimizing increase in travel time of carriers. The semiconductor light receiving element includes a semiconductor stacked structure including a first conductivity type layer, a light absorbing layer, and a second conductivity type layer having a light incidence plane in order. The semiconductor light receiving element has an oxidation layer including a non-oxidation region and an oxidation region in a stacking in-plane direction in the light absorbing layer or between the first conductivity type layer and the light absorbing layer.
摘要:
A semiconductor light emitting device includes a first-conductivity-type first multilayer film reflecting mirror, and a second-conductivity-type second multilayer film reflecting mirror; a cavity layer; and a first conductive section, a second conductive section, and a third conductive section. The cavity layer has a stacked configuration including a first-conductivity-type or undoped first cladding layer, an undoped first active layer, a second-conductivity-type or undoped second cladding layer, a second-conductivity-type first contact layer, a first-conductivity-type second contact layer, a first-conductivity-type or undoped third cladding layer, an undoped second active layer, and a second-conductivity-type or undoped fourth cladding layer. The first conductive section is electrically connected to the first multilayer film reflecting mirror, the second conductive section is electrically connected to the second multilayer film reflecting mirror, and the third conductive section is electrically connected to the first contact layer and the second contact layer.
摘要:
The present invention provides a semiconductor device realizing reduced occurrence of a defect such as a crack at the time of adhering elements to each other. The semiconductor device includes a first element and a second element adhered to each other. At least one of the first and second elements has a pressure relaxation layer on the side facing the other of the first and second elements, and the pressure relaxation layer includes a semiconductor part having a projection/recess part including a projection projected toward the other element, and a resin part filled in a recess in the projection/recess part.
摘要:
The present invention provides a method of manufacturing a semiconductor device realizing improved yield. The semiconductor device includes: a substrate having a top face, an under face, and side faces; an optical function unit formed on the top face; a plurality of electrode pads formed on the under face; and a wiring formed on at least the side face and electrically connecting the optical function unit and at least one of the plurality of electrode pads.
摘要:
A light-emitting element assembly includes a support substrate having a first surface, a second surface facing the first surface, a recessed portion, and a conductive material layer formed over the first surface and the inner surface of the recessed portion, and a light-emitting element. The light-emitting element has a laminated structure including a first compound semiconductor layer, a light-emitting portion, and a second compound semiconductor layer, at least the second compound semiconductor layer and the light-emitting portion constituting a mesa structure. The light-emitting element further includes an insulating layer formed, a second electrode, and a first electrode. The mesa structure is placed in the recessed portion so that the conductive material layer and the second electrode are in at least partial contact with each other, and light emitted from the light-emitting portion is emitted from the second surface side of the first compound semiconductor layer.
摘要:
A semiconductor light-emitting device includes a semiconductor light-emitting element including a first multilayer reflector, an active layer having a light-emitting region, and a second multilayer reflector in the stated order; a semiconductor light-detecting element disposed opposite the first multilayer reflector in relation to the semiconductor light-emitting element and including a light-absorbing layer configured to absorb light emitted from the light-emitting region; and an insulating oxidized layer disposed between the semiconductor light-emitting element and the semiconductor light-detecting element.
摘要:
The present invention provides a semiconductor light receiving element capable of reducing capacity while minimizing increase in travel time of carriers. The semiconductor light receiving element includes a semiconductor stacked structure including a first conductivity type layer, a light absorbing layer, and a second conductivity type layer having a light incidence plane in order. The semiconductor light receiving element has an oxidation layer including a non-oxidation region and an oxidation region in a stacking in-plane direction in the light absorbing layer or between the first conductivity type layer and the light absorbing layer.
摘要:
An optical transmitting and receiving module for an optical waveguide performs both a transmitting operation and a receiving operation simultaneously. The linear first waveguide is provided such that one side is coupled to an optical fiber and the other side is coupled to a light receiving element. A second waveguide is coupled so as to meet and make an acute angle with the first waveguide. The second waveguide is shaped with a tapered portion adjacent to the first waveguide.
摘要:
An edge-emitting semiconductor laser includes a resonator structure having an active layer. A low reflection three-layer film is provided on in emitting edge face of the resonator structure and a high reflection multi-layer film is provided on a rear edge face of the resonator structure. The low reflection three-layer film is formed in an exemplary embodiment by sequentially stacking a first Al2O3 layer having a thickness of 10 nm, an Si3N4 film having a thickness of 190 nm, and a second Al2O3 layer having a thickness of 10 nm.
摘要翻译:边缘发射半导体激光器包括具有有源层的谐振器结构。 在谐振器结构的发射边缘面上设置低反射三层膜,并且在谐振器结构的后边缘面上设置高反射多层膜。 在示例性实施例中,通过顺序堆叠厚度为10nm的第一Al 2 O 3 O 3层,Si 3层,形成低反射三层膜 厚度为190nm的N 3 N 4 N膜和厚度为10nm的第二Al 2 O 3 O 3层。
摘要:
The present invention is to provide an optical waveguide capable of allowing a desired incident light to efficiently propagate towards the light emission side and to emit therefrom, and capable of preventing unnecessary incident light from propagating, and in providing a light source module and an optical information processing apparatus using the optical waveguide. The optical waveguide comprises a bonded member of a substrate, a core layer and cladding layers, configured to introduce an incident line coming into the core layer toward a light emission side thereof. A metal layer for preventing the incident light coming into the cladding layer from propagating to the light emission side is formed in a pattern intercepting a sectional plane of light transmission of said cladding layer.