摘要:
A method includes directing an ion beam at a plurality of differing incident angles with respect to a target surface of a substrate to implant ions into a plurality of portions of the substrate, wherein each one of the plurality of differing incident angles is associated with a different one of the plurality of portions, measuring angle sensitive data from each of the plurality of portions of the substrate, and determining an angle misalignment between the target surface and the ion beam incident on the target surface from the angle sensitive data. A method of determining a substrate miscut is also provided.
摘要:
Digital video (DV) formatted image streams may be converted into an intermediate format having a lower resolution than the original image streams. A user may then edit the intermediate formatted image streams to generate a sequence of edit commands. The edit commands may then be processed to generate an output image stream based on the original image streams. The output image stream may be in any desired format, including DV format. The sequence of edit commands may also be processed to generate a preview image stream in the intermediate format.
摘要:
Health care record analytic and medical treatment assessment systems and methods include at least one processor-based device configured to identify a medical condition or treatment action item and facilitate its completion in a desired timeframe.
摘要:
An improved technique for processing a substrate is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for processing a substrate. The method may comprise ion implanting a substrate disposed downstream of the ion source with ions generated in an ion source; and disposing a first portion of a mask in front of the substrate to expose the first portion of the mask to the ions, the mask being supported by the first and second mask holders, the mask further comprising a second portion wound in the first mask holder.
摘要:
An improved bifacial solar cell is disclosed. In some embodiments, the front side includes an n-type field surface field, while the back side includes a p-type emitter. In other embodiments, the p-type emitter is on the front side. To maximize the diffusion of majority carriers and lower the series resistance between the contact and the substrate, the regions beneath the metal contacts are more heavily doped. Thus, regions of higher dopant concentration are created in at least one of the FSF or the emitter. These regions are created through the use of selective implants, which can be performed on one or two sides of the bifacial solar cell to improve efficiency.
摘要:
A method of LED manufacturing is disclosed. A coating is applied to a mesa. This coating may have different thicknesses on the sidewalls of the mesa compared to the top of the mesa. Ion implantation into the mesa will form implanted regions in the sidewalls in one embodiment. These implanted regions may be used for LED isolation or passivation.
摘要:
Glitches during ion implantation of a workpiece, such as a solar cell, can be compensated for. In one instance, a workpiece is implanted during a first pass at a first speed. This first pass results in a region of uneven dose in the workpiece. The workpiece is then implanted during a second pass at a second speed. This second speed is different from the first speed. The second speed may correspond to the entire workpiece or just the region of uneven dose in the workpiece.
摘要:
An improved bifacial solar cell is disclosed. In some embodiments, the front side includes an n-type field surface field, while the back side includes a p-type emitter. In other embodiments, the p-type emitter is on the front side. To maximize the diffusion of majority carriers and lower the series resistance between the contact and the substrate, the regions beneath the metal contacts are more heavily doped. Thus, regions of higher dopant concentration are created in at least one of the FSF or the emitter. These regions are created through the use of selective implants, which can be performed on one or two sides of the bifacial solar cell to improve efficiency.
摘要:
A method of tailoring the dopant profile of a substrate by utilizing two different dopants, each having a different diffusivity is disclosed. The substrate may be, for example, a solar cell. By introducing two different dopants, such as by ion implantation, furnace diffusion, or paste, it is possible to create the desired dopant profile. In addition, the dopants may be introduced simultaneously, partially simultaneously, or sequentially. Dopant pairs preferably consist of one lighter species and one heavier species, where the lighter species has a greater diffusivity. For example, dopant pairs such as boron and gallium, boron and indium, phosphorus and arsenic, and phosphorus and antimony, can be utilized.
摘要:
A method for compensating for variations in timing of data sent to a processor on data bit lines relative to a strobe clock sent to the processor on a strobe clock line that can be used in a dual data rate (DDR) memory identifies discrete minimum and maximum time offset values for test data in selected data bit patterns for the data bit lines. The discrete minimum time offset value is the minimum timing adjustment required to allow the processor to receive the data in a steady-state condition during a data valid window of the strobe clock and the discrete maximum time offset value is a maximum timing adjustment required to allow the processor to receive the data in a steady-state condition during a data valid window of the strobe clock. The discrete minimum and maximum time offset values identify a valid range when the data bit lines supply data in a steady-state condition for latching into the processor by the strobe clock.