Abstract:
Methods and systems for measuring a characteristic of a substrate or preparing a substrate for analysis are provided. One method for measuring a characteristic of a substrate includes removing a portion of a feature on the substrate using an electron beam to expose a cross-sectional profile of a remaining portion of the feature. The feature may be a photoresist feature. The method also includes measuring a characteristic of the cross-sectional profile. A method for preparing a substrate for analysis includes removing a portion of a material on the substrate proximate to a defect using chemical etching in combination with an electron beam. The defect may be a subsurface defect or a partially subsurface defect. Another method for preparing a substrate for analysis includes removing a portion of a material on a substrate proximate to a defect using chemical etching in combination with an electron beam and a light beam.
Abstract:
Methods and systems for measurements of a substrate are provided. One system includes a non-optical subsystem configured to perform first measurements on a substrate. The system also includes an optical subsystem coupled to the non-optical subsystem. The optical subsystem is configured to perform second measurements on the substrate. In addition, the system includes a processor coupled to the subsystems. The processor is configured to calibrate one of the subsystems using the measurements performed by the other subsystem. One method includes performing first measurements on a substrate using a non-optical subsystem and performing second measurements on the substrate using an optical subsystem that is coupled to the non-optical subsystem. The method also includes calibrating one of the subsystems using the measurements performed by the other subsystem.
Abstract:
Systems and methods for measuring one or more characteristics of patterned features on a specimen are provided. One system includes an optical subsystem configured to acquire measurements of light scattered from the patterned features on the specimen at multiple angles of incidence, multiple azimuthal angles, and multiple wavelengths simultaneously. The system also includes a processor configured to determine the one or more characteristics of the patterned features from the measurements. One method includes acquiring measurements of light scattered from the patterned features on the specimen at multiple angles of incidence, multiple azimuthal angles, and multiple wavelengths simultaneously. The method also includes determining the one or more characteristics of the patterned features from the measurements.
Abstract:
Systems configured to provide illumination of a specimen during inspection are provided. One system includes catoptric elements configured to direct light from a light source to a line across the specimen at an oblique angle of incidence. The catoptric elements include positive and negative elements configured such that pupil distortions of the positive and negative elements are substantially canceled. Another system includes a dioptric element and a catoptric element. The dioptric element and the catoptric element are configured to direct light from a light source to a line across the specimen at an oblique angle of incidence. The dioptric and catoptric elements are also configured such that pupil distortions of the dioptric and catoptric elements are substantially canceled.
Abstract:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, a thin film characteristic and an electrical property of a specimen. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
Abstract:
Methods and systems for preparing a sample for thin film analysis are provided. One system includes an energy beam source configured to generate an energy beam. The system also includes an energy beam delivery subsystem configured to direct the energy beam to a sample and to modify the energy beam such that the energy beam has a substantially flat-top profile on the sample. The energy beam removes a portion of a contaminant layer on the sample to expose an analysis area of a thin film on the sample. One method includes generating an energy beam and modifying the energy beam such that the energy beam has a substantially flat-top profile. The method also includes directing the energy beam to a sample. The energy beam removes a portion of a contaminant layer on the sample to expose an analysis area of a thin film on the sample.
Abstract:
A method for determining a property of an insulating film is provided. The method may include obtaining a charge density measurement of the film, a surface voltage potential of the film relative to a bulk voltage potential of the substrate, and a rate of voltage decay of the film. The method may also include determining the property of the film using the charge density, the surface voltage potential, and the rate of voltage decay. A method for determining a thickness of an insulating film is provided. The method may include depositing a charge on the film, measuring a surface voltage potential of the film relative to a bulk voltage potential of the substrate, and measuring a rate of voltage decay of the film. The method may also include determining a thickness of the film using the rate of voltage decay and a theoretical model relating to leakage and film thickness.
Abstract:
Systems and methods for inspecting a surface of a specimen such as a semiconductor wafer are provided. A system may include an illumination system configured to direct a first beam of light to a surface of the specimen at an oblique angle of incidence and to direct a second beam of light to a surface of the specimen at a substantially normal angle. The system may also include a collection system configured to collect at least a portion of the first and second beams of light returned from the surface of the specimen. In addition, the system may include a detection system. The detection system may be configured to process the collected portions of the first and second beams of light. In this manner, a presence of defects on the specimen may be detected from the collected portions of the first and second beams of light.
Abstract:
Methods and systems for monitoring semiconductor fabrication processes are provided. A system may include a stage configured to support a specimen and coupled to a measurement device. The measurement device may include an illumination system and a detection system. The illumination system and the detection system may be configured such that the system may be configured to determine multiple properties of the specimen. For example, the system may be configured to determine multiple properties of a specimen including, but not limited to, an implant characteristic and a presence of defects. In this manner, a measurement device may perform multiple optical and/or non-optical metrology and/or inspection techniques.
Abstract:
Various computer-implemented methods are provided. One method includes determining errors across a field of a lens of a lithography system based on wafer measurements. In addition, the method includes separating the errors into correctable and non-correctable errors across the field. The errors may include dose errors, focus errors, or dose and focus errors. In another embodiment, the method may include determining correction terms for parameter(s) of the lithography system, which if applied to the parameter(s), the correctable errors would be eliminated resulting in approximately optimal imaging performance of the lithography system. Another method includes controlling one or more parameters of features within substantially an entire printed area on a product wafer using a limited number of wafer measurements performed on a test wafer. The wafer measurements may be performed on a first feature type, and the features that are controlled may include a second, different feature type.