Abstract:
A culture apparatus includes a heat insulating box main body having an inner box; a culture vessel; a duct and a circulation blower forcing convection of a gas in the culture vessel; a humidifying pan disposed on the bottom of the culture vessel and positioned inside the duct; a heat pipe having a heat insulating section, a heat input section disposed at one end of the heat insulating section and a heat dissipation section disposed at the other end of the heat insulating section. The heat pipe is attached to the culture apparatus with the heat dissipation section being disposed outside the culture apparatus, the heat insulating section passing through the heat insulating box main body and the inner box, and the heat input section being disposed in a gas passage in the duct.
Abstract:
A temperature chamber in which a device is tested is connected to a temperature-controlled air source for controlling temperature of the chamber. The temperature chamber includes thermal insulation formed on side surfaces of the chamber. A universal manifold adaptor for directing the temperature-controlled air directly to a device being tested is connected to the chamber. The temperature chamber also includes an exhaust system. A self-closing cable feed-through module is connected to an outer surface of the chamber. The feed-through module includes a first portion and a second portion, wherein cables are fed through the first and second portions into the chamber in a first position and the first and second portions form a leak tight seal around the cables in a second position.
Abstract:
A low pressure and high-low temperature test box capable of controlling humidity comprises a test box body (1), a first heater (2) and a first evaporator (3) which are installed in the test box body (1), a humiture sensor (4) for detecting the humiture inside the test box body (1) and a vacuum manometer (5) for detecting the pressure inside the test box body (1) which are both installed on the test box body (1), an air circulation device (6) for circulating the air inside the test box body (1), and a humidity adjusting device (7) which is connected to the test box body (1) and used for adjusting the humidity inside the test box body (1). A vacuum pump (8) for vacuumizing the test box body (1) is also provided on the test box body (1).
Abstract:
A ductless fume hood suitable for the removal of various chemical materials including toxic and non-toxic gases, vapors, particles, dust and unpleasant odors from a fluid stream. The ductless fume hood uses electronic devices and software to enable real time monitoring of gas levels in parts per million.
Abstract:
An apparatus for transfer of a liquid using a diaphragm that separates a working fluid volume from a working air volume and can controllably induce a change pressure to draw or expel a target fluid into a tube. The apparatus is particularly suitable for automated processing of nucleic acids and other samples includes a disposable container comprising a tray and a flexible barrier. The barrier is configured to seal with a top edge of the tray, providing a closed, aseptic work area within the sealed tray. A pipette head and/or other sample manipulation device can be attached to the inside of the barrier under the diaphraghm, and the barrier can include an interface for a robotic arm or other device. When the barrier is sealed over the tray, the barrier separates the contents of the tray from the robot or other manipulation device.
Abstract:
A temperature chamber in which a device is tested is connected to a temperature-controlled air source for controlling temperature of the chamber. The temperature chamber includes thermal insulation formed on side surfaces of the chamber. A universal manifold adaptor for directing the temperature-controlled air directly to a device being tested is connected to the chamber. The temperature chamber also includes an exhaust system. A self-closing cable feed-through module is connected to an outer surface of the chamber. The feed-through module includes a first portion and a second portion, wherein cables are fed through the first and second portions into the chamber in a first position and the first and second portions form a leak tight seal around the cables in a second position.
Abstract:
The invention relates to a method for making a diagnostic element. The method comprises providing a shaped channel comprising at least one holding port and an inlet passage and outlet passage on either side of the holding port; flowing in a diagnostic gel into the inlet passage of the shaped channel; and encapsulating the diagnostic gel in the at least one holding port to form a diagnostic element. The invention also provides a method for using a diagnostic element, wherein the method comprises flowing sample through the diagnostic gel to provide an analyte diagnostic gel; analyzing the analyte diagnostic gel.