Abstract:
An improved internal combustion and waste hat steam engine having an heat recovery steam generator optimized for the steam cycle, that can operate on steam, fuel, or a water-fuel composition where the mixture is at a critical temperature and in a homogeneous single phase. The condensing waste heat recovery steam generator exhaust manifold is close-coupled to the engine cylinder exhaust ports and provides heat to create the homogeneous mixture and steam. The primary heat source is internal combustion. An external heat source may be coupled with the engine to increase the heat available to the condensing waste water recovery steam generator exhaust manifold to produce additional steam. The engine can be operated as a pure diesel engine, for warm-up or for when an external source of steam is desired.
Abstract:
The invention relates to a method for optimizing the operation of a thermal engine having combustion parameters controlled by an electronic housing and at least one engine mapping, characterized in that the method comprises: a step of carrying out a near-infrared spectroscopic analysis of a bio-fuel containing a mixture of alcohols and/or ethers and/or water in order to determine the proportions of water and of at least one other oxygenated compound of the alcohol and/or ether type contained in the bio-fuel; and a step of selecting and/or modifying said mapping on the basis of the analysis result in order to optimize the operation of the thermal engine.
Abstract:
Embodiments for performing an automatic stop-start operation are provided. In one example, a method for an engine comprises during an automatic stop, injecting a water-containing fluid onto a closed intake valve of a cylinder while the engine is at rest, and on a subsequent restart, fueling the cylinder after at least one intake stroke and subsequent exhaust stroke are performed in the cylinder.
Abstract:
An internal combustion engine includes a cylinder with a combustion chamber and a piston selectively changing the volume of the combustion chamber. The combustion chamber receives a mixture of air, hydrogen and a liquid fuel consisting essentially of water and a flammable, preferably non-fossil, substance. The contents of the combustion chamber are ignited generating power.
Abstract:
A process for operating an internal combustion engine or a nozzle includes producing a fuel mixture in-situ. The fuel mixture consists of a polar component A, a nonpolar fuel component B, an amphiphilic component C, and an auxiliary component D. The fuel mixture is produced in a high-pressure region of an injection system of an internal combustion engine or of a nozzle within 10 seconds of an injection operation. The fuel mixture is injected into the internal combustion engine or the nozzle. A pressure is in a range of from 100 to 4,000 bar.
Abstract:
A portable, on-demand hydrogen generation system is provided for producing hydrogen and injecting the hydrogen as a fuel supplement into the air intake of internal combustion engines, more particularly to vehicles. Hydrogen and oxygen is produced with a fuel cell at low temperatures and pressure from water in a supply tank. The hydrogen and oxygen is passed back thru the supply tank for distribution and water preservation. The gases are kept separate by a divider in the tank and the water level in the tank. In the case of gasoline engines, the hydrogen is directed to the air intake of the engine while the oxygen is vented to the atmosphere. The device is optionally powered by the vehicle battery, a stand alone battery, waste heat of the internal combustion engine or solar energy. The system utilizes a vacuum switch or other engine sensor that permits power to the device and therefore hydrogen production only when the engine is in operation. Therefore, as the hydrogen is produced it is immediately consumed by the engine. No hydrogen is stored on, in or around the vehicle.
Abstract:
An apparatus including a reciprocating internal combustion engine with at least one piston and cylinder set and an intake stream; at least one liquid atomizer in fluid communication with the intake stream operable to provide a plurality of liquid droplets with a diameter less than 5 μm to the intake stream; and a controller where the controller is able to adjust an index of compression for the engine by: calculating a wet compression level in response to an engine operating limit and adjusting the at least one liquid atomizer in response to the wet compression level.
Abstract:
A portable, on-demand hydrogen generation system is provided for producing hydrogen and injecting the hydrogen as a fuel supplement into the air intake of internal combustion engines, more particularly to vehicles. Hydrogen and oxygen is produced with a fuel cell at low temperatures and pressure from water in a supply tank. The hydrogen and oxygen is passed back thru the supply tank for distribution and water preservation. The gases are kept separate by a divider in the tank and the water level in the tank. In the case of gasoline engines, the hydrogen is directed to the air intake of the engine while the oxygen is vented to the atmosphere. The device is optionally powered by the vehicle battery, a stand alone battery, waste heat of the internal combustion engine or solar energy. The system utilizes a vacuum switch or other engine sensor that permits power to the device and therefore hydrogen production only when the engine is in operation. Therefore, as the hydrogen is produced it is immediately consumed by the engine. No hydrogen is stored on, in or around the vehicle.
Abstract:
In a turbocharged diesel engine, the charge air is cooled in a charge air cooler designed as an injection intercooler. The water which has been introduced into the working medium of the diesel engine in the charge air cooler, after the working medium has been expanded, is condensed out of the exhaust gas by means of a condenser and a separator and is returned to the charge air cooler. According to the invention, the engine is started without injection of externally supplied water into the charge air cooler. Water which forms during the combustion in the diesel engine is condensed out of the exhaust-gas stream and returned to the charge air cooler. Additional water vapor formed continuously during operation through combustion of diesel fuel is likewise condensed out and introduced into the charge air cooler. In this way, the working medium is laden with moisture until the water mass flow that can be separated out of the exhaust gas is sufficient for the set cooling power of the charge air cooler. Further combustion water that is formed can be used for other purposes. In this way, engines with internal combustion in which water is introduced into the working medium can be operated without an external supply of water.
Abstract:
A fuel injection system with an injector for an internal combustion engine has a binary injection nozzle whose pressure chamber can be alternatingly supplied with fuel and a supplemental fluid. A valve device is provided which can control the high-pressure side fuel delivery to the binary injection nozzle and the connection of the pressure chamber to a low-pressure side and to a supply line of the supplemental fluid. The valve device has a reversing valve that is embodied for controlling the impingement of high or low pressure on the pressure chamber and is also embodied for controlling the filling of the pressure chamber with the supplemental fluid. Therefore, the valve device is improved with regard to more rapid and precise switching operations and is also simplified, resulting in greater reliability and reduced maintenance.