摘要:
The present disclosure provides methods and systems for prioritizing phenotype-causing genomic variants. The methods include using variant prioritization analyses and in combination with biomedical ontologies using a sophisticated re-ranking methodology to re-rank these variants based on phenotype information. The methods can be useful in any genomics study and diagnostics; for example, rare and common disease gene discovery, tumor growth mutation detection, drug responder studies, metabolic studies, personalized medicine, agricultural analysis, and centennial analysis.
摘要:
A method for determining haemodynamic performance in a human or animal subject comprises receiving at a processor data representing haemodynamic variables measured from the subject over time. The haemodynamic variables comprise at least two of Systemic Perfusion Pressure (SPP), Systemic Vascular Resistance (SVR), Cardiac Output (CO), Heart Rate (HR) and Stroke Volume (SV). The data are processed to produce a display signal for causing a display device to present a visual mapping relating the haemodynamic variables according to the relationship SPP=CO×SVR and the visual mapping is displayed on a display device. The visual mapping may be corrected Heart Rate (HR) or include a second mapping which facilitates an adjustment to take account of HR.
摘要:
Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
摘要:
A data classification system comprising a server adapted to receive data elements from a computer network, compute a distance between the elements and a plurality of representative elements such that where the distance is less than a threshold, the input elements are associated with the representative element and where the distance is not less than the threshold, the input element is stored as a new representative element. A method of classifying network traffic is further disclosed that can include providing a server adapted to receive data from a network, compute a distance between the data elements and representative data elements such that where the distance is less than a threshold, the input elements are associated with the representative element and where the distance is not less than the threshold, the input element is stored as a new representative element.
摘要:
Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
摘要:
Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
摘要:
The present invention disclose a computerized system for designing nucleic acid sequences for gene expression comprising; (a) a server [103] for hosting a database [106] (b) a network connection [102] and (c) a computer readable medium [101] comprising functional modules including (i) a design module for enabling designing of nucleic acid constructs; (ii) interactive user interface module for visualizing biological information relating to design operations; (iii) transaction module for purchasing a user-designed or pre-stocked nucleic acid constructs (iv) a detecting module for detecting designed nucleic acid sequences comprises harmful sequences; the system is operating in a method of: (a) visualizing biological information; (b) designing nucleic acid sequences; (c) detecting and notifying when harmful sequences are designed; (d) providing means for transactions regarding ordering and purchasing said synthesized nucleic acids.
摘要:
A method includes: measuring a blood glucose (bG) level in a blood sample; storing the bG level and a time of receipt of the blood sample; storing a classification of the blood sample; in response to the receipt of the blood sample, selecting a group of stored bG levels having the classification of the blood sample and that were received within a predetermined period before receipt of the blood sample; calculating a bG evaluation parameter from the selected bG levels; evaluating the bG evaluation parameter in relation to first predetermined criteria, the first predetermined criteria including a first threshold indicative of a high bG level or a low bG level; selectively displaying an indication of recognition of a pattern in the selected bG levels when the bG evaluation parameter is greater than or less than the first threshold; and selectively removing the indication from the display.
摘要:
Disclosed is an interactive genome browser executing within a web browser application, configured to display patient genetic data and additional genetic data tracks which are aligned by base pair. Additional tracks may include public data, community data, private data, sequence gaps, and additional genetic tests or probes which are available. Tests or probes may be ordered by selecting them from a test or probe track. Data in a genetic information database may also be searched using the interactive genome browser. Analyzed patient data may be published and made available to a community of users, which may communicate with one another.