Abstract:
The present invention relates to a nanofilter formed by using a porous ultrafiltration membrane as a precursor, and carefully controlling reaction conditions so as to maintain sufficient hydrophilic nature of the membrane while causing the pore structure to close to a nanofilter range (less than 400 Daltons). This produces a solvent stable cellulose nanofiltration membrane capable of operating at satisfactory flux in aqueous solutions, and being low binding to organic biomaterials.
Abstract:
A device for supporting a plurality of flexible containers (1) for liquid; characterized in that it comprises a plurality of baskets (10), each adapted to contain at least one said flexible container (1), a magazine (60) to receive said baskets (10), able to adopt an operating configuration in which said baskets (10) are disposed inclined one above the other, which magazine (60) comprises support means (75) for said baskets (10), able to adopt a loading/unloading position in which they are adapted such that each said basket (10) can be loaded/unloaded along a horizontal path, and able to adopt an operating position in which they are adapted to maintain each said basket (10) in inclined position to make said magazine (60) adopt said operating configuration, and means (83) for driving said support means (75) between said loading/unloading position and said operating position.
Abstract:
A system and method for implementing embedded electronics in environments where radiation or extreme temperatures are used is disclosed. Embedded electronics are affixed to various components of a pharmaceutical system, thereby enabling the customer to download pertinent information about the component, such as lot number, date of manufacturer, test parameters, etc. Additionally, these electronics allow an array of functions and features to be implemented, such as integrity tests and diagnostics. The electronics in the pharmaceutical components utilize a technology that is not as susceptible to radiation and extreme temperatures as traditional electronics.
Abstract:
An autonomous filter device and a method for improving the filter life and performance is disclosed. The filter element is equipped with one or more sensors, adapted to measure one or more characteristics. In response to the measured characteristic, the control logic within the filter element is able to determine an appropriate response. For example, the control logic may determine that a sudden, but temporary, blockage has occurred in the filter membrane. In response, the control logic may initiate a specific response designed to alleviate the blockage. The control logic will then determine the success of the response, based monitoring any change in the fluid characteristics. Based thereon, the control logic may alert the operator that the filter element must be replaced. Alternatively, if the response was successful in correcting the blockage, the control logic need not notify the operator, as the filter element is back to normal operating operation.
Abstract:
A disposable flow path having a manifold system that provides pressure resistance for the disposable device. The disposable device is comprised of a first rigid plastic sheet and a second rigid plastic sheet. Each sheet has two major surfaces and a thickness between them. At least one sheet surface has flow channels formed in it. The flow channels extend away from a first major surface and beyond the normal plane of a second major surface of the sheet. The sheets are liquid tightly sealed to each other at their adjoining first major surfaces. When each sheet contains a flow channel, the flow channels are aligned and in register with each other. One or more fittings can be secured in the flow channel(s) at an edge of the two liquid tightly sealed sheets. Alternatively, tubing is placed in the channels before the sheets are secured to one another.
Abstract:
The invention provides a filtering and centrifugation device, comprising a barrel, a volume in the barrel for receiving a fluid sample to be processed, a filter medium, at least one piston movable in the barrel to force fluid in the volume through the filter medium to produce a filtrate, and a space for pelleting particulate material. The device is centrifugeable, and said space is located in or communicates with the volume and is located preferably away from the filter medium such that the particulate material does not or at least not completely clog the filter medium during such centrifugation of the device. The invention also provides a method for the sterile filtration of a sample, comprising the steps of introducing the sample into the volume of such a device, subjecting the device to centrifugation to pellet particulate material contained in the sample at the space away from the filter medium, and applying force to the piston(s) to force fluid of the sample in the volume through the filter medium to produce a filtrate. By providing the space for pelleting the particulate material under the influence of the centrifugation force, the clogging of the filter medium can be avoided or considerably delayed. Further, the entire process can be performed in the same device without having to remove the sample for any intermediate clarification steps.
Abstract:
The present invention relates to an asymmetric chromatography media suitable for separations applications, particularly as packed bed, fluidized bed or magnetized bed chromatography media. In certain embodiments, the asymmetric chromatography media comprises asymmetric particles, preferably beads, having at least two distinct, controlled pore size distributions. Preferably one of the distinct pore size distributions is in an internal region of the particle, and the other is in an external region or coating on the particle. These distinct pore size distributions can be modified with uniform or alternatively unique functional groups or mixtures of functional groups. The present invention allows for the control over pore size distribution within an asymmetric porous particle by providing a distinct internal region, preferably in the form of a bead, and a distinct external region, preferably in the form of a coating on the bead.
Abstract:
Method for the removal of ions and ionizable substances from a polar liquid (10) comprising at least one process wherein said polar liquid (10) is split into a first stream (F1) and a second stream (F2), Said first stream (F1) passing through an electrochemically regenerable ion-exchange material (2) located where an electric field between two electrodes (4, 5) is applied, said first stream (F1) flowing from one electrode (4) to the other electrode (5) so that the ions to be removed are migrating in the direction reverse to the first stream flow through said ion-exchange material (2), Said second stream (F2) rinsing said one electrode (4), and said material is regenerated by the ions which are formed at the other electrode (5). Device in particular for the implementation of said method.
Abstract:
Sample preparation device that allows for a complete bind, wash, elute, buffer-exchange and concentration process to be carried out without sample transfer between multiple devices. The device includes a reservoir, a column for holding chromatography media, a holder region for holding a filtration device, and an outlet. The filtration device plugs into the holder region of the centrifugal device, and the assembly can be placed in an optional holder. The assembly, with or without the optional holder, can be placed in a conventional centrifuge tube for centrifugation. The entire bind, wash, elute, buffer exchange and concentration steps can be carried out with the apparatus without any pipette transfers (and the associated sample losses. The sample preparation device also can be used for binding and washing steps, in which case the filtration device is not needed, and for buffer exchange and concentration steps, in which case the media is not needed.
Abstract:
The device for the transfer of a medium comprises a magazine having two main faces (17) of which one is adapted to cooperate with a container and a lateral face (18) extending between said main faces (17) as well as at least one sliding valve (3) housed in a cavity of said magazine (2) and in which there is formed a transfer duct (59) for said medium which issues on said face (17) adapted to cooperate with said container, said valve (3) having a closed position in which it sealingly isolates said duct (59) from said container and an open position in which said duct (59) is placed in communication with said container; said valve (3) comprising a valve member (40), an isolation sleeve (41) surrounding at least partially said valve member (40) as well as spring means (58) adapted to be compressed by said valve member (40) when said valve (3) is in its open position.