Abstract:
A reactive pre-clean chamber that contains a wafer heating apparatus, such as a high-temperature electrostatic chuck (HTESC), for directly heating a wafer supported on the apparatus during a pre-cleaning process. The wafer heating apparatus is capable of heating the wafer to the optimum temperatures required for a hydrogen plasma reactive pre-clean (RPC) process. Furthermore, degassing and pre-cleaning can be carried out in the same pre-clean chamber. The invention further includes a method of pre-cleaning a wafer using a pre-clean chamber that contains a wafer heating apparatus.
Abstract:
The present invention recognizes that identifying genes expressed during developmental processes, stress responses, and disease states can advance understanding of these biological functions, and can contribute to identifying targets for therapeutic drugs. In addition, the present invention recognizes that rapid and reliable profiling of genetic variations, such as mutations and SNPs, is of increasing importance to diagnostics, prognostics, forensics, heredity determinations, and pharmacogenetics. One aspect of the present invention provides a method of identifying one or more nucleic acid molecules that are expressed under a given set of conditions based on their complementarity to known sequences, or one or more mutations or SNPs in a population of nucleic acid molecules. The method includes: contacting at least one probe nucleic acid molecule with a survey population of nucleic acid molecules under conditions that promote nucleic acid hybridization to generate a probe-survey population mixture of nucleic acid molecules, treating the probe-survey population mixture of nucleic acid molecules with a nucleolytic activity, such that nucleolytic activity-sensitive nucleic acid molecules are digested, and contacting the resulting mixture of nucleolytic activity-protected nucleic acid molecules with a solid support comprising one or more attached nucleic acid molecules to generate attached nucleic acid molecule/nucleolytic activity-protected nucleic acid molecule complexes, and identifying one or more of the attached nucleic acid molecules or one or more of the nucleolytic activity-protected nucleic acid molecules in one or more attached nucleic acid molecule/nucleolytic activity-protected nucleic acid molecule complexes.
Abstract:
It is a general object of the present invention to provide an improved method of fabrication in the formation of an improved copper metal diffusion barrier layer having the structure, W/WSiN/WN, in single and dual damascene interconnect trench/contact via processing with 0.10 micron nodes for MOSFET and CMOS applications. The diffusion barrier is formed by depositing a tungsten nitride bottom layer, followed by an in situ SiH4/NH3 or SiH4/H2 soak forming a WSiN layer, and depositing a final top layer of tungsten. This invention is used to manufacture reliable metal interconnects and contact vias in the fabrication of MOSFET and CMOS devices for both logic and memory applications and the copper diffusion barrier formed, W/WSiN/WN, passes a stringent barrier thermal reliability test at 400° C. Pure single barrier layers, i.e., single layer WN, exhibit copper punch through or copper spiking during the stringent barrier thermal reliability test at 400° C.
Abstract:
It is a general object of the present invention to provide an improved method of fabrication in the formation of an improved copper metal diffusion barrier layer having the structure, W/WSiN/WN, in single and dual damascene interconnect trench/contact via processing with 0.10 micron nodes for MOSFET and CMOS applications. The diffusion barrier is formed by depositing a tungsten nitride bottom layer, followed by an in situ SiH4/NH3 or SiH4/H2 soak forming a WSiN layer, and depositing a final top layer of tungsten. This invention is used to manufacture reliable metal interconnects and contact vias in the fabrication of MOSFET and CMOS devices for both logic and memory applications and the copper diffusion barrier formed, W/WSiN/WN, passes a stringent barrier thermal reliability test at 400° C. Pure single barrier layers, i.e., single layer WN, exhibit copper punch through or copper spiking during the stringent barrier thermal reliability test at 400° C.
Abstract:
The present invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents.
Abstract:
A device acts as a particle switch to transport and/or re-direct microparticles which are in a fluid suspension. The switch comprises at least three structural branches and the branches may be connected at a common junction. Particles can be transported along the branches as a result of the forces generated along that branch. Particles are transported into or out of the particle switch via the ends of the branches. Particles can be switched from one branch into one of the other branches. Depending on the properties of the particles, the transportation mechanism may be traveling-wave-dielectrophoresis or traveling-wave-electrophoresis.
Abstract:
While many network components include diagnostic capabilities that are sometimes implemented at the hardware level, these diagnostics can be unreliable. Thus, false indications of operability or inoperability can result when these diagnostics are relied upon exclusively. To better detect operational problems with a network component, operational parameters from the network component and one or more peer devices are analyzed to determine whether the network component is operational. In some embodiments, data derived from these operational parameters is provided to a supervised machine learning model, and the model provides output indicating the operational status of the network component. Some embodiments binarize operational parameters of a device and compute a maximum duration the binarized parameters indicate inactivity of the device. Some embodiments compute a moving average of the binarized parameters. The maximum duration and/or moving average(s) are provided to the machine learning model in some embodiments.
Abstract:
A method of enhancing judgment of a gas detector contains: dividing a voltage difference between an output signal voltage and an environmental detection voltage of the gas detector into several parts. Each of multiple detecting processes of the gas detector is captured by a microprocessor at the environmental detection voltage for ten times in each microsecond, and a predetermined detection time of each detecting process is 10 seconds. When the environmental detection voltage changes linearly, the predetermined detection time of each detecting process is shorten to 1/10 second/per time. After three successive detection processes change linearly, a warning device is started. Otherwise, the microprocessor compensates the output signal voltage and recovers the predetermined detection time when the environmental detection voltage changes so as to maintain the voltage difference at a certain value.
Abstract:
A device includes an interposer, which includes a substrate having a top surface. An interconnect structure is formed over the top surface of the substrate, wherein the interconnect structure includes at least one dielectric layer, and metal features in the at least one dielectric layer. A plurality of through-substrate vias (TSVs) is in the substrate and electrically coupled to the interconnect structure. A first die is over and bonded onto the interposer. A second die is bonded onto the interposer, wherein the second die is under the interconnect structure.
Abstract:
A microarray-based assay is provided, which is used for analyzing molecular interactions, including polynucleotides, polypeptides, antibodies, small molecule compounds, peptides and carbohydrates. Such method comprises coupling a target molecule to a particle and then binding to a probe molecule on microarray. In particular, multiplexed genetic analysis of nucleic acid fragments can be implemented. Specific genes, single nucleotide polymorphisms or gene mutations, such as deletions, insertions, and indels, can be identified. Coupled with microarray, the particles, themselves or further modified, facilitate the detection of results with non-expensive devices or even naked eyes. This technology enables the detection and interpretation of molecular interactions in an efficient and cost effective way.