Abstract:
A system for a vehicle includes a transmission, an engine, and a controller communicably coupled to the transmission and the engine. The controller is structured to receive a vehicle operating parameter, receive vehicle operation data during operation of the vehicle, determine that the vehicle is in a coasting state based on the vehicle operation data, and provide a command to control at least one of an engine and the transmission during the coasting state to at least one of optimize the vehicle operating parameter and facilitate and maintain the coasting state.
Abstract:
A method and system for remotely determining real-time operating fuel efficiencies based on dynamic operating characteristics of a vehicle to generate an optimal refueling management approach for the vehicle by providing refueling locations and associated refueling amounts for each refueling location, to achieve improved vehicle fuel economy, is provided.
Abstract:
Systems and methods for correcting mass airflow sensor drift include an operation conditions module to interpret a base calibration function, a MAF sensor input value, and a current operating condition. A MAF correction module determines an expected MAF value in response to the current operating condition and a predetermined operating condition. The MAF correction module will also determine an adjusted MAF value in response to the expected MAF value, the base calibration function, and the MAF sensor input value. A MAF reporting module is structured to provide the adjusted MAF value.
Abstract:
Systems and methods are disclosed for compensating a mass airflow (MAF) sensor reading to account for the bleeding or diversion of intake airflow for compressor operation in determining fresh air flow into an engine. The engine is downstream from the compressor diversion.
Abstract:
Systems, apparatuses, and methods disclosed herein relate to a system including a vehicle accessory and a controller coupled to the vehicle accessory. The controller is configured to receive internal vehicle information including information about the vehicle accessory; receive external static information based on a position of the vehicle; receive external dynamic information based on the position and a time of travel of the vehicle at the position; and control operation of the vehicle accessory based on the internal vehicle information, the external static information, and the external dynamic information.
Abstract:
A system is provided for performing an automated power charging process for one or more electric vehicles using a processor. Included in the processor is a charge controller that calculates a capacity of a power grid system by communicating with the power grid system via a network, and a power demand level of the one or more electric vehicles to satisfy one or more mission requirements of each electric vehicle. The power demand level of the one or more electric vehicles is compared with the capacity of the power grid system. In response to the comparison, at least one charging mode is selected from an override mode and an internal combustion engine mode for performing the automated power charging process. The charge controller automatically charges the one or more electric vehicles based on the selected at least one charging mode.
Abstract:
A vehicle comprises an aftertreatment system configured to reduce constituents of an exhaust gas. The vehicle also includes a controller configured to determine a predicted load on the vehicle during a route, and adjust at least one of a temperature of the aftertreatment system or an amount of a reductant inserted into the aftertreatment system based on the predicted load.
Abstract:
An apparatus includes a control circuit. The control circuit is structured to interpret condition data indicative of an external operating condition of a vehicle, determine an operating parameter of the vehicle based on an actuator response of an actuator of the vehicle, compare the operating parameter to an operating parameter threshold where the operating parameter threshold is based on the external operating condition, and remap an actuator response map of the actuator based on the comparison indicating that the operating parameter does not satisfy the operating parameter threshold. The operating parameter includes at least one of a fuel economy value, an emissions value, an acceleration value, a braking value, or a wear value.
Abstract:
The systems, methods, and apparatuses provided herein disclose interpreting a performance criteria for a vehicle, wherein the performance criteria is indicative of a desired operating parameter for the vehicle; interpreting a good driver definition value indicative of a good driver profile for the interpreted performance criteria; determining a performance value indicative of how an operator of the vehicle is performing with respect to the good driver definition value; and in response to the performance value indicating that the vehicle is not satisfying the performance criteria, managing an actuator output response value for at least one actuator in the vehicle to facilitate achievement of the good driver definition value.
Abstract:
Apparatuses, systems, methods, and techniques relating to engine start/stop functionality are disclosed. Automatic engine start/stop controls can be disabled during engine operating conditions in which one or more combustion parameters indicate a lack of combustion stability in one or more cylinders of the engine. Engine start/stop controls are enabled when the one or more combustion parameters satisfy combustion parameter conditions indicating combustion stability in the one or more cylinders.