Abstract:
An electrode assembly for use in interventricular cardiac mapping includes one or more elongated splines each of which carries a plurality of spaced apart electrodes thereon. The body of each spline is formed of a plurality of alternating electrically conductive layers and the electrically non-conductive layers. A separate electrically conductive pathway is provided to connect each of the electrodes to a different one of the conductive layers. Each of the layers is electrically connected to an electrical signal processing device so that signals provided by each of the electrodes can be processed.
Abstract:
A method and apparatus for ablating at least a portion of a nasal concha. The apparatus includes a catheter having a distal portion with a dimension configured for positioning through a nostril of a patient into a nasal meatus adjacent a nasal concha, and an energy delivery device coupled to the catheter distal portion including one or more energy delivering probes extendable from the catheter distal portion a sufficient distance to be inserted into an interior of the nasal concha to deliver ablative energy therein. The distal portion of the apparatus may also include an expandable member, expansion of the expandable member within the nasal meatus immobilizing the distal portion within the nasal meatus.
Abstract:
A wound closure, hemostasis device, such as a femoral hemostat, includes an inflatable balloon with an inflation and deflation outlet. A placement patch includes an aperture for receiving the inflation and deflation outlet. The inflatable balloon is coupled to the placement patch and positioned adjacent to a wound site or a bleeding vessel. A belt straps through the placement patch and around the patient's body or a patient's appendage and holds the placement patch at the wound site or bleeding vessel. An inflation tube is coupled to the inflation and deflation outlet. An inflation apparatus is coupled to the inflation and deflation outlet.
Abstract:
An ablation apparatus suitable for the ablation of soft palate tissue, including but not limited to the uvula, includes a cannula with a distal end and a proximal end and a lumen. A vacuum assisted retainer device is coupled to the cannula distal end. The vacuum retainer member includes a uvula receiving member configured to retain at least a portion of the uvula with the application of vacuum. An electromagnetic electrode is coupled to an electromagnetic energy source. A vacuum source is coupled to the uvula receiving member.
Abstract:
A medical ablation device comprising a flexible RF electrode wire or tube, the terminal portion thereof extending through an insulating sleeve axially moveable thereon. The electrode and surrounding sleeve extend through a portion of a rigid tube having a distal end adapted to be inserted into the body of a patient. Tabs are attached to the proximal end of the sleeve and electrode for advancing them together from the terminal end of the tube, for retracting the sleeve from the distal end of the electrode to expose a predetermined area of electrode surface, and for retracting them together into the terminal end of the tube. The electrode can also be a hollow tube, the proximal end thereof being adapted to be connected to a suction source for aspiration of tissue adjacent its distal end or it can optionally contain a fiber optic, the end thereof being enclosed within the tube and closely adjacent its distal end. In one embodiment, the electrode is a hollow electrode tube of highly flexible memory metal, preformed to have a curved memory configuration. The portion of the electrode tube and its surrounding sleeve extending beyond the distal end of the outer tube adopts the curved memory configuration, causing it to follow a curved path when extended through intervening tissue to reach a target tissue to be ablated.
Abstract:
A method of this invention for treating body tissues containing cancerous cells or non-malignant tumors with RF ablation, alone or in combination with systemic or localized chemotherapy comprising introducing a stylet comprising an electrode surface and a sleeve longitudinally moveable thereon into the vicinity of the body tissues, retracting the sleeve from a portion of the electrode surface, and supplying RF power to the electrode surface sufficient to heat the tissue to a temperature of above about 45.degree. C. for a time to cause reduction of tissue mass in the vicinity of the electrode. The RF power supplied to the electrode surface is sufficient to effect a desiccated fluid diffusion barrier capsule surrounding the body tissue being treated. The stylet can include a hollow tube having fluid distribution ports therein, and the method can include the step of passing fluid through one or more distribution ports into the body tissue being treated. The fluid can be saline or a chemotherapeutic fluid such as liquid or gas containing a cytotoxic agent, for example. The fluid can be administered in a variety of procedures. The fluid can be passed through a distribution port into the body tissue before, during and/or after the RF power is supplied to the electrode surface, for example. Preferably, the fluid is introduced after a barrier capsule has been formed. The devices comprises electrodes havming a hollow core and a closed sharpened distal tip. The electrode has a plurality of fluid distribution ports therein for distribution of fluid treatment agents into the tissue.
Abstract:
An improved assembly for steering and orienting a functional element at the distal end of a catheter tube holds the functional element with its major axis aligned with the axis of the catheter tube for convenient steering to a tissue site. The mechanism can also pivot the functional element in response to an external force to orient the major axis of the functional element generally parallel to the plane of the tissue site, without bending the catheter tube.
Abstract:
A method and apparatus for contacting heart valve tissue with a catheter tip electrode adapted for atrioventricular (AV) node mapping and modification is provided. The tip is conformed to rest stably and comfortably on a cardiac valve such as the mitral or tricuspid valve. The tip has a peanut shape consisting of two electrode lobes joined by a narrower connecting piece. The tip rests on the valve at the connecting piece and is secured by the adjoining lobes. The connecting piece itself may either be insulating or electrically conductive. The catheter may also include standard mapping and/or pacing electrodes. The catheter may further include a steering mechanism for positioning the catheter at various treatment sites in the heart.
Abstract:
An apparatus includes an expandable member. The expandable member is sized to be positionable in a sphincter. An energy delivery device is positioned on a surface of the expandable member. The energy delivery device has a configuration that provides sufficient energy delivery to create lesions in the interior of the sphincter. When the expandable member is removed from the sphincter, the sphincter returns to its closed or contracted configuration.
Abstract:
A sphincter treatment apparatus includes an energy delivery device introduction member including a proximal end with a first radius of curvature and a distal end with a second radius of curvature. The introduction member is configured to be introduced into the sphincter in a non-deployed state and to be expanded to a deployed state to at least partially expand the sphincter or an adjoining structure. An energy delivery device is coupled to the introduction member. A retainer member is coupled to the energy delivery device introduction member and configured to controllably position the introduction member in an orifice of the sphincter.