摘要:
A method for reducing interfacial layer (IL) thickness for high-k dielectrics and metal gate stack is provided. In one embodiment, the method includes forming an interfacial layer on a semiconductor substrate, etching back the interfacial layer, depositing a high-k dielectric material over the interfacial layer, and forming a metal gate over the high-k dielectric material. The IL can be chemical oxide, ozonated oxide, thermal oxide, or formed by ultraviolet ozone (UVO) oxidation process from chemical oxide, etc. The etching back of IL can be performed by a Diluted HF (DHF) process, a vapor HF process, or any other suitable process. The method can further include performing UV curing or low thermal budget annealing on the interfacial layer before depositing the high-k dielectric material.
摘要:
The present disclosure provides methods and apparatus of fluorine passivation in IC device fabrication. In one embodiment, a method of fabricating a semiconductor device includes providing a substrate and passivating a surface of the substrate with a mixture of hydrofluoric acid and alcohol to form a fluorine-passivated surface. The method further includes forming a gate dielectric layer over the fluorine-passivated surface, and then forming a metal gate electrode over the gate dielectric layer. A semiconductor device fabricated by such a method is also disclosed.
摘要:
A device and method of formation are provided for a high-k gate dielectric and gate electrode. The high-k dielectric material is formed, and a silicon-rich film is formed over the high-k dielectric material. The silicon-rich film is then treated through either oxidation or nitridation to reduce the Fermi-level pinning that results from both the bonding of the high-k material to the subsequent gate conductor and also from a lack of oxygen along the interface of the high-k dielectric material and the gate conductor. A conductive material is then formed over the film through a controlled process to create the gate conductor.
摘要:
A method for fabricating a semiconductor device with improved performance is disclosed. The method comprises providing a semiconductor substrate; forming one or more gate stacks having an interfacial layer, a high-k dielectric layer, and a gate layer over the substrate; and performing at least one treatment on the interfacial layer, wherein the treatment comprises a microwave radiation treatment, an ultraviolet radiation treatment, or a combination thereof.
摘要:
A strained silicon layer fabrication employs a substrate having successively formed thereover: (1) a first silicon-germanium alloy material layer; (2) a first silicon layer; (3) a second silicon-germanium alloy material layer; and (4) a second silicon layer. Within the fabrication each of the first silicon-germanium alloy layer and the second silicon-germanium alloy layer is formed of a thickness less than a threshold thickness for dislocation defect formation, such as to provide attenuated dislocation defect formation within the strained silicon layer fabrication.
摘要:
A MOSFET includes a gate having a high-k gate dielectric on a substrate and a gate electrode on the gate dielectric. The gate dielectric protrudes beyond the gate electrode. A deep source and drain having shallow extensions are formed on either side of the gate. The deep source and drain are formed by selective in-situ doped epitaxy or by ion implantation and the extensions are formed by selective, in-situ doped epitaxy. The extensions lie beneath the gate in contact with the gate dielectric. The material of the gate dielectric and the amount of its protrusion beyond the gate electrode are selected so that epitaxial procedures and related procedures do not cause bridging between the gate electrode and the source/drain extensions. Methods of fabricating the MOSFET are described.
摘要:
A plasma treatment method used to form improved PECVD silicon nitride film passivation layers over metal interconnections on ULSI circuits is achieved. The process is carried out in a single PECVD reactor. After depositing a thin silicon oxide stress-release layer over the metal lines, a plasma-enhanced CVD silicon nitride layer is deposited, and subsequently a plasma treatment step is carried out on the silicon nitride layer. The use of a sufficiently thin silicon nitride layer eliminates photoresist trapping at the next photoresist process step that would otherwise be trapped in the voids (keyholes) that typically form in the silicon nitride passivation layer between the closely spaced metal lines, and can cause corrosion of the metal. The plasma treatment in He, Ar, or a mixture of the two, is then used to densify the silicon nitride layer and to substantially reduce pinholes that would otherwise cause interlevel metal shorts.
摘要:
This description relates to a method including forming an interfacial layer over a semiconductor substrate. The method further includes etching back the interfacial layer. The method further includes performing an ultraviolet (UV) curing process on the interfacial layer. The UV curing process includes supplying a gas flow rate ranging from 10 standard cubic centimeters per minute (sccm) to 5 standard liters per minute (slm), wherein the gas comprises inert gas, and heating the interfacial layer at a temperature less than or equal to 700° C. The method further includes depositing a high-k dielectric material over the interfacial layer.
摘要:
A device and method of formation are provided for a high-k gate dielectric and gate electrode. The high-k dielectric material is formed, and a silicon-rich film is formed over the high-k dielectric material. The silicon-rich film is then treated through either oxidation or nitridation to reduce the Fermi-level pinning that results from both the bonding of the high-k material to the subsequent gate conductor and also from a lack of oxygen along the interface of the high-k dielectric material and the gate conductor. A conductive material is then formed over the film through a controlled process to create the gate conductor.
摘要:
A method for fabricating a semiconductor device with improved performance is disclosed. The method comprises providing a semiconductor substrate; forming one or more gate stacks having an interfacial layer, a high-k dielectric layer, and a gate layer over the substrate; and performing at least one treatment on the interfacial layer, wherein the treatment comprises a microwave radiation treatment, an ultraviolet radiation treatment, or a combination thereof.