Abstract:
The present disclosure includes apparatuses and methods related to stopping criteria for layered iterative error correction. A number of methods can include receiving a codeword with an error correction circuit, iteratively error correcting the codeword with the error correction circuit including parity checking the codeword on a layer-by-layer basis and updating the codeword after each layer. Methods can include stopping the iterative error correction in response to a parity check being correct for a particular layer.
Abstract:
The present disclosure includes methods, devices, and systems for object oriented memory in solid state devices. One embodiment of a method for object oriented memory in solid state devices includes accessing a defined set of data as a single object in an atomic operation manner, where the accessing is from a source other than a host. The embodiment also includes storing the defined set of data as the single object in a number of solid state memory blocks as formatted by a control component of a solid state device that includes the number of solid state memory blocks.
Abstract:
Memory devices and methods for operating a memory include filtering a histogram of sensed data of the memory, and adjusting a parameter used to sense the memory using the filtered histogram. Filtering can be accomplished by averaging or summing, and may include weighting the sums or averages.
Abstract:
A memory device has a plurality of individually erasable blocks of memory cells and a controller configured to configure a first block of memory cells in a first configuration comprising one or more groups of overhead data memory cells, and to configure a second block of memory cells in a second configuration comprising one or more groups of user data memory cells and at least one group of overhead data memory cells. The first configuration is different than the second configuration. At least one group of overhead data memory cells of the second block of memory cells comprises a different storage capacity than at least one group of overhead data memory cells of the first block of memory cells.
Abstract:
Apparatus and methods store error recovery data in different dimensions of a memory array. For example, in one dimension, block error correction codes (ECC) are used, and in another dimension, supplemental error correction codes, such as convolutional codes, are used. By using separate dimensions, the likelihood that a defect affects both error recovery techniques is lessened, thereby increasing the probability that error recovery can be performed successfully. In one example, block error correction codes are used for data stored along rows, and this data is stored in one level of multiple-level cells of the array. Supplemental error correction codes are used for data stored along columns, such as along the cells of a string, and the supplemental error correction codes are stored in a different level than the error correction codes.
Abstract:
Methods for managing data stored in a memory device facilitate managing utilization of memory of different densities. The methods include reading first data from a first number of pages or blocks of memory cells having a first density, performing a data handling operation on the read first data to generate second data, and writing the second data to a second number of pages or blocks of memory cells having a second density, wherein the second density is different than the first density, and wherein the second number is different than the first number.
Abstract:
Methods, devices, and systems for data modulation for groups of memory cells. Data modulation for groups of memory cells can include modulating N units of data to a combination of programmed states. Each memory cell of a group of G number of memory cells can be programmed to one of M number of programmed states, where M is greater than a minimum number of programmed states needed to store N/G units of data in one memory cell, and where the programmed state of each memory cell of the group is one of the combination of programmed states.
Abstract:
The present disclosure includes methods, devices, and systems for dealing with threshold voltage change in memory devices. A number of embodiments include an array of memory cells and control circuitry having sense circuitry coupled to the array. The control circuitry is configured to determine changes in threshold voltages (Vts) associated with the memory cells without using a reference cell, and adjust the sense circuitry based on the determined changes and without using a reference cell.
Abstract:
The present disclosure includes methods, devices, and systems for adjusting sensing voltages in devices. One or more embodiments include memory cells, and a controller configured to perform a sense operation on the memory cells using a sensing voltage to determine a quantity of the memory cells having a threshold voltage (Vt) greater than the sensing voltage and adjust a sensing voltage used to determine a state of the memory cells based, at least partially, on the determined quantity of memory cells.
Abstract:
The present disclosure includes methods, devices, and systems for packet processing. One method embodiment for packet flow control includes deconstructing a transport layer packet into a number of link-control layer packets, wherein each of the link-control layer packets has an associated sequence number, communicating the number of link-control layer packets via a common physical connection for a plurality of peripheral devices, and limiting a number of outstanding link-control layer packets during the communication.