摘要:
An integrated transformer structure includes a first coil element associated with a transverse axis, the first coil element having at least one turn. The first coil element includes a first portion provided on a first lateral level, and a second portion provided on a second lateral level. The first and second lateral levels being mutually spaced apart along said transverse axis. The first and second portions being displaced laterally from said axis by different respective distances. At least one crossover portion of the first coil element, in which the first coil element being configured to provide a conducting path through at least a portion of the first portion of the first coil element to the crossover portion, through the crossover portion and subsequently through at least a portion of the second portion of the first coil element, in which any change of flow direction along said path is less than 90° in a lateral direction.
摘要:
The invention provides a new multilevel interconnect structure of air gaps in a layer of IMD. A first layer of dielectric is provided over a surface; the surface contains metal points of contact. Trenches are provided in this first layer of dielectric. The trenches are filled with a first layer of nitride or disposable solid and polished. A second layer of dielectric is deposited over the first layer of dielectric. Trenches are formed in the second layer of dielectric, a second layer of nitride or disposable solid is deposited over the second layer of dielectric. The layer of nitride or disposable solid is polished. A thin layer of oxide is deposited over the surface of the second layer of dielectric. The thin layer of oxide is masked and etched thereby creating openings in this thin layer of oxide, these openings align with the points of intersect of the trenches in the first layer of dielectric and in the second layer of dielectric. The nitride or removable solid is removed from the trenches. The openings in the thin layer of oxide are closed off leaving a network of trenches that are filled with air in the two layers of dielectric that now function as the Inter Level Dielectric.
摘要:
A trial semiconductor photomask design having discontinuity points is provided, and each of the discontinuity points is treated as simulated light sources. Simulated light from each of the simulated light sources is focused, and a composite image intensity of the focused simulated light is calculated to verify the trial semiconductor photomask design. The trial semiconductor photomask design is sharpened. A photomask design specification is generated for use in fabricating such a photomask.
摘要:
In accordance with the objects of this invention, a new method of fabricating a polysilicon gate transistor is achieved. An alternating aperture phase shift mask (AAPSM) is used to pattern polysilicon gates in a single exposure without a trim mask. A semiconductor substrate is provided. A gate dielectric layer is deposited. A polysilicon layer is deposited. The polysilicon layer, the gate dielectric layer and the semiconductor substrate are patterned to form trenches for planned shallow trench isolations (STI). A trench oxide layer is deposited filling the trenches. The trench oxide layer is polished down to the top surface of the polysilicon layer to complete the STI. A photoresist layer is deposited and patterned to form a feature mask for planned polysilicon gates. The patterning is by a single exposure using an AAPSM mask. Unwanted features in the photoresist pattern that are caused by phase conflicts overlie the STI. The polysilicon layer is etched to form the polysilicon gates.
摘要:
A new method of forming shallow trench isolations has been described. A silicon semiconductor substrate is provided. A silicon nitride layer is deposited overlying the substrate. A polysilicon layer is deposited overlying the silicon nitride layer. An oxidation mask is deposited overlying the polysilicon layer. The oxidation mask, polysilicon layer, silicon nitride layer, and the silicon semiconductor substrate are patterned to form trenches for planned shallow trench isolations. The silicon semiconductor substrate exposed within the trenches is oxidized to form an oxide liner layer within the trenches wherein the oxidation mask prevents oxidation of the polysilicon layer. Thereafter the oxidation mask is removed. A trench oxide layer is deposited overlying the liner oxide layer and filling the trenches. The trench oxide layer and the polysilicon layer are polished down stopping at the silicon nitride layer with a polishing selectivity of oxide to polysilicon to nitride of 4:100:1 wherein dishing is avoided to complete shallow trench isolations in the manufacture of an integrated circuit device.
摘要:
In accordance with the objects of this invention, a new method of fabricating a polysilicon gate transistor is achieved. An alternating aperture phase shift mask (AAPSM) is used to pattern polysilicon gates in a single exposure without a trim mask. A semiconductor substrate is provided. A gate dielectric layer is deposited. A polysilicon layer is deposited. The polysilicon layer, the gate dielectric layer and the semiconductor substrate are patterned to form trenches for planned shallow trench isolations (STI). A trench oxide layer is deposited filling the trenches. The trench oxide layer is polished down to the top surface of the polysilicon layer to complete the STI. A photoresist layer is deposited and patterned to form a feature mask for planned polysilicon gates. The patterning is by a single exposure using an AAPSM mask. Unwanted features in the photoresist pattern that are caused by phase conflicts overlie the STI. The polysilicon layer is etched to form the polysilicon gates.
摘要:
Devices with embedded silicon or germanium nanocrystals, fabricated using ion implantation, exhibit superior data-retention characteristics relative to conventional floating-gate devices. However, the prior art use of ion implantation for their manufacture introduces several problems. These have been overcome by initial use of rapid thermal oxidation to grow a high quality layer of thin tunnel oxide. Chemical vapor deposition is then used to deposit a germanium doped oxide layer. A capping oxide is then deposited following which the structure is rapid thermally annealed to synthesize the germanium nanocrystals.
摘要:
A method of enhancing inductor performance comprising the following steps. A structure having a first oxide layer formed thereover is provided. A lower low-k dielectric layer is formed over the first oxide layer. A second oxide layer is formed over the lower low-k dielectric layer. The second oxide layer is patterned to form at least one hole there through exposing a portion of the lower low-k dielectric layer. Etching through the exposed portion of the lower low-k dielectric layer and into the lower low-k dielectric layer to from at least one respective air gap within the etched lower low-k dielectric layer. An upper low-k dielectric layer is formed over the patterned second oxide layer. At least one inductor is formed within the upper low-k dielectric layer and over the at least one air gap whereby the performance of the inductor is enhanced.
摘要:
A novel complimentary shielded inductor on a semiconductor is disclosed. A region of electrically floating high resistive material is deposited between the inductor and the semiconductor substrate. The high resistive shield is patterned with a number of gaps, such that a current induced in the shield by the inductor does not have a closed loop path. The high resistive floating shield compliments a grounded low resistive shield to achieve higher performance inductors. In this fashion, noise in the substrate is reduced. The novel complimentary shield does not significantly degrade the figures of merit of the inductor, such as, quality factor and resonance frequency. In one embodiment, the grounded shield is made of patterned N-well (or P-well) structures. In still another embodiment, the low resistive electrically grounded shield is made of patterned Silicide, which may be formed on portions of the substrate itself.
摘要:
One of the limitations to current usage of scanning thermal microscopes arises when one needs to obtain a thermal map of an electrically biased specimen. Current practice is for the conductive parts of the specimen to be passivated to prevent excessive current leakage between the tip and the conductive sample. The present invention eliminates the need for this by coating the probe's microtip with a layer of insulation that is also a good thermal conductor. Examples of both thermocouple and thermistor based probes are given along with processes for their manufacture.