摘要:
An advanced method of patterning a gate stack including a high-k gate dielectric that is capped with a high-k gate dielectric capping layer such as, for example, a rare earth metal (or rare earth like)-containing layer is provided. In particular, the present invention provides a method in which a combination of wet and dry etching is used in patterning such gate stacks which substantially reduces the amount of remnant high-k gate dielectric capping material remaining on the surface of a semiconductor substrate to a value that is less than 1010 atoms/cm2, preferably less than about 109 atoms/cm2.
摘要翻译:提供了一种构图栅极堆叠的先进方法,该栅极堆叠包括用例如含有稀土金属(或稀土类))层的高k栅介质覆盖层封盖的高k栅极电介质。 特别地,本发明提供了一种方法,其中使用湿蚀刻和干蚀刻的组合来构图这样的栅极堆叠,其将残留在半导体衬底的表面上的剩余的高k栅极电介质封盖材料的量基本上减小到值 小于10 10原子/ cm 2,优选小于约10 9原子/ cm 2。
摘要:
A compound metal comprising MOxNy which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the MOxNy compound metal. Furthermore, the MOxNy metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (pMOS) device. In the above formula, M is a metal selected from Group IVB, VB, VIB or VIIB of the Periodic Table of Elements, x is from about 5 to about 40 atomic % and y is from about 5 to about 40 atomic %.
摘要:
A compound metal comprising MOxNy which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the MOxNy compound metal. Furthermore, the MOxNy metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 Å in a p-metal oxide semiconductor (PMOS) device. In the above formula, M is a metal selected from Group IVB, VB, VIB or VIIB of the Periodic Table of Elements, x is from about 5 to about 40 atomic % and y is from about 5 to about 40 atomic %.
摘要:
A semiconductor structure, particularly a pFET, which includes a dielectric material that has a dielectric constant of greater than that of SiO2 and a Ge or Si content of greater than 50% and at least one other means for threshold/flatband voltage tuning by material stack engineering is provided. The other means contemplated in the present invention include, for example, utilizing an insulating interlayer atop the dielectric for charge fixing and/or by forming an engineered channel region. The present invention also relates to a method of fabricating such a CMOS structure.
摘要:
A method for fabricating an FET device is disclosed. The FET device has a gate insulator with a high-k dielectric portion, and a threshold modifying material. The method introduces a stabilizing material into the gate insulator in order to hinder one or more metals from the threshold modifying material to penetrate across the high-k portion of the gate insulator. The introduction of the stabilizing material may involve disposing a stabilizing agent over a layer which contains an oxide of the one or more metals. A stabilizing material may also be incorporated into the high-k dielectric. Application of the method may lead to FET devices with unique gate insulator structures.
摘要:
A semiconductor structure, particularly a pFET, which includes a dielectric material that has a dielectric constant of greater than that of SiO2 and a Ge or Si content of greater than 50% and at least one other means for threshold/flatband voltage tuning by material stack engineering is provided. The other means contemplated in the present invention include, for example, utilizing an insulating interlayer atop the dielectric for charge fixing and/or by forming an engineered channel region. The present invention also relates to a method of fabricating such a CMOS structure.
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
A method for fabricating a CMOS gate electrode by using Re, Rh, Pt, Ir or Ru metal and a CMOS structure that contains such gate electrodes are described. The work functions of these metals make them compatible with current pFET requirements. For instance, the metal can withstand the high hydrogen pressures necessary to produce properly passivated interfaces without undergoing chemical changes. The thermal stability of the metal on dielectric layers such as SiO2, Al2O3 and other suitable dielectric materials makes it compatible with post-processing temperatures up to 1000° C. A low temperature/low pressure CVD technique with Re2(CO)10 as the source material is used when Re is to be deposited.
摘要翻译:描述了通过使用Re,Rh,Pt,Ir或Ru金属制造CMOS栅电极的方法和包含这种栅电极的CMOS结构。 这些金属的工作功能使其与当前的pFET要求兼容。 例如,金属可以承受生产适当钝化界面而不经历化学变化所需的高氢气压力。 金属在介电层上的热稳定性如SiO 2,Al 2 O 3和其它合适的介电材料使其与后处理温度高达1000℃相兼容。具有Re2(CO)10作为源的低温/低压CVD技术 当Re沉积时使用材料。
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
An insulating interlayer for use in complementary metal oxide semiconductor (CMOS) that prevents unwanted shifts in threshold voltage and flatband voltage is provided. The insulating interlayer is located between a gate dielectric having a dielectric constant of greater than 4.0 and a Si-containing gate conductor. The insulating interlayer of the present invention is any metal nitride, that optionally may include oxygen, that is capable of stabilizing the threshold and flatband voltages. In a preferred embodiment, the insulating interlayer is aluminum nitride or aluminum oxynitride and the gate dielectric is hafnium oxide, hafnium silicate or hafnium silicon oxynitride. The present invention is particularly useful in stabilizing the threshold and flatband voltage of p-type field effect transistors.