Abstract:
An integrated circuit includes a physical layer interface having a control timing domain and a data timing domain, and circuits that enable the control timing domain during a change in power conservation mode in response to a first event, and that enable the data timing domain in response to a second event. The control timing domain can include interface circuits coupled to a command and address path, and the data timing domain can include interface circuits coupled to a data path.
Abstract:
A system that calibrates timing relationships between signals involved in performing write operations is described. This system includes a memory controller which is coupled to a set of memory chips, wherein each memory chip includes a phase detector configured to calibrate a phase relationship between a data-strobe signal and a clock signal received at the memory chip from the memory controller during a write operation. Furthermore, the memory controller is configured to perform one or more write-read-validate operations to calibrate a clock-cycle relationship between the data-strobe signal and the clock signal, wherein the write-read-validate operations involve varying a delay on the data-strobe signal relative to the clock signal by a multiple of a clock period.
Abstract:
Systems and methods are provided for detecting and correcting address errors in a memory system. In the memory system, a memory device generates an error-detection code based on an address transmitted via an address bus and transmits the error-detection code to a memory controller. The memory controller transmits an error indication to the memory device in response to the error-detection code. The error indication causes the memory device to remove the received address and prevent a memory operation.
Abstract:
A memory module comprises a module interface having module data-group ports to communicate data as respective data groups, a command port to receive memory-access commands, a first memory device including a first device data-group port, a second memory device including a second device data-group port, and a signal buffer coupled between the module interface and each of the first and second devices. In a first mode, in response to the memory-access commands, the signal buffer communicates the data group associated with each of the first and second device data-group ports via a respective one of the module data-group ports. In a second mode, in response to the memory-access commands, the signal buffer alternatively communicates the data group associated with the first device data-group port or the data group associated with the second device data-group port via the same one of the module data-group ports.
Abstract:
A system has a plurality of memory devices arranged in a fly-by topology, each having on-die termination (ODT) circuitry for connecting to an address and control (RQ) bus. The ODT circuitry of each memory device includes a set of one or more control registers for controlling on-die termination of one or more signal lines of the RQ bus. A first memory device includes a first set of one or more control registers storing a first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the first memory device, and a second memory device includes a second set of one or more control registers storing a second ODT value different from the first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the second memory device.
Abstract:
A memory controller is disclosed. The memory controller is configured to be connected to one or more memory devices via an address and control (RQ) bus. Each of the memory devices have on-die termination (ODT) circuitry connected to a subset of signal lines of the RQ bus, and the memory controller is operable to selectively disable the ODT circuitry in at least one memory device of the one or more memory devices.
Abstract:
Systems and methods are provided for detecting and correcting address errors in a memory system. In the memory system, a memory device generates an error-detection code based on an address transmitted via an address bus and transmits the error-detection code to a memory controller. The memory controller transmits an error indication to the memory device in response to the error-detection code. The error indication causes the memory device to remove the received address and prevent a memory operation.
Abstract:
An embodiment is directed to an integrated circuit device having programmable input capacitance. For example, a programmable register of a memory device may store a value representative of an adjustment to the input capacitance value of a control pin. An embodiment is directed to controlling the skew of a synchronous memory system by allowing programmability of the lighter loaded pins in order to increase their load to match the more heavily loaded pins. By matching lighter loaded pins to more heavily loaded pins, the system exhibits improved synchronization of propagation delays of the control and address pins. In addition, an embodiment provides the ability to vary the loading depending on how many ranks are on the device.
Abstract:
A memory module comprises a data interface including a plurality of data lines and a plurality of configurable switches coupled between the data interface and a data path to one or more memories. The effective width of the memory module can be configured by enabling or disabling different subsets of the configurable switches. The configurable switches may be controlled by manual switches, by a buffer on the memory module, by an external memory controller, or by the memories on the memory module.
Abstract:
A multi-rank memory system in which calibration operations are performed between a memory controller and one rank of memory while data is transferred between the controller and other ranks of memory. A memory controller performs a calibration operation that calibrates parameters pertaining to transmission of data via a first data bus between the memory controller and a memory device in a first rank of memory. While the controller performs the calibration operation, the controller also transfers data with a memory device in a second rank of memory via a second data bus.