Abstract:
A first timing reference signal and a second timing reference signal are sent to a memory device. The second timing reference signal has approximately a quadrature phase relationship with respect to the first timing reference signal. A plurality of serial data patterns are received from the memory device. The transitions of the first timing reference and the second timing reference determining when transitions occur between the bits of the plurality of data patterns. Timing indicators associated with when received transitions occur between the bits of the plurality of data patterns are received from the memory device. The timing indicators are each measured using a single sampler. Based on the timing indicators, a first duty cycle adjustment for the first timing reference signal, a second duty cycle adjustment for the second timing reference signal, and a quadrature phase adjustment are determined and applied.
Abstract:
A low-power, high-performance source-synchronous chip interface which provides rapid turn-on and facilitates high signaling rates between a transmitter and a receiver located on different chips is described in various embodiments. Some embodiments of the chip interface include, among others: a segmented “fast turn-on” bias circuit to reduce power supply ringing during the rapid power-on process; current mode logic clock buffers in a clock path of the chip interface to further reduce the effect of power supply ringing; a multiplying injection-locked oscillator (MILO) clock generator to generate higher frequency clock signals from a reference clock; a digitally controlled delay line which can be inserted in the clock path to mitigate deterministic jitter caused by the MILO clock generator; and circuits for periodically re-evaluating whether it is safe to retime transmit data signals in the reference clock domain directly with the faster clock signals.
Abstract:
An integrated circuit includes a physical layer interface having a control timing domain and a data timing domain, and circuits that enable the control timing domain during a change in power conservation mode in response to a first event, and that enable the data timing domain in response to a second event. The control timing domain can include interface circuits coupled to a command and address path, and the data timing domain can include interface circuits coupled to a data path.
Abstract:
An integrated circuit includes a voltage regulator to supply a regulated voltage and a data output that couples to an unterminated transmission line. The circuit draws a variable amount of power from the voltage regulator according to the data. The voltage regulator includes a first current generation circuit to provide a data transition-dependent current.
Abstract:
A first timing reference signal and a second timing reference signal are sent to a memory device. The second timing reference signal has approximately a quadrature phase relationship with respect to the first timing reference signal. A plurality of serial data patterns are received from the memory device. The transitions of the first timing reference and the second timing reference determining when transitions occur between the bits of the plurality of data patterns. Timing indicators associated with when received transitions occur between the bits of the plurality of data patterns are received from the memory device. The timing indicators are each measured using a single sampler. Based on the timing indicators, a first duty cycle adjustment for the first timing reference signal, a second duty cycle adjustment for the second timing reference signal, and a quadrature phase adjustment are determined and applied.
Abstract:
An integrated circuit includes a physical layer interface having a control timing domain and a data timing domain, and circuits that enable the control timing domain during a change in power conservation mode in response to a first event, and that enable the data timing domain in response to a second event. The control timing domain can include interface circuits coupled to a command and address path, and the data timing domain can include interface circuits coupled to a data path.
Abstract:
In an illustrative embodiment, the memory circuit includes first and second data paths on which data is transferred for read and write memory operations and first and second mixer circuits for adjusting the phase of clock signals applied to their inputs. The mixer circuits are cross-coupled so that the outputs of the first and second mixers are both available to both the first and second data paths. One mixer is used to provide a first phase adjusted clock signal for use by the operating circuit and the other mixer is used to provide a second phase adjusted clock signal for use by a following operation whatever that may be.
Abstract:
Disclosed embodiments relate to a system that changes transmitter and/or receiver settings to deal with reliability issues caused by a predetermined event, such as a change in a power state or a clock start event. One embodiment uses a first setting while operating a transmitter during a normal operating mode, and a second setting while operating the transmitter during a transient period following the predetermined event. A second embodiment uses similar first and second settings in a receiver, or in both a transmitter and a receiver employed on one side of a bidirectional link. The first and second settings can be associated with different swing voltages, edge rates, equalizations and/or impedances.
Abstract:
An integrated circuit includes a physical layer interface having a control timing domain and a data timing domain, and circuits that enable the control timing domain during a change in power conservation mode in response to a first event, and that enable the data timing domain in response to a second event. The control timing domain can include interface circuits coupled to a command and address path, and the data timing domain can include interface circuits coupled to a data path.
Abstract:
Embodiments of a circuit are described. In this circuit, a receive circuit includes M input nodes that receive a set of M symbols on M links during a time interval, where the set of M symbols are associated with a codeword. Moreover, the receive circuit includes a decoder, coupled to the M input nodes, that determines the codeword in a code space based on the set of M symbols and that decodes the codeword to a corresponding set of N decoded symbols. Additionally, the receive circuit may include a detector that detects an imbalance in a number of instances of a first value in the set of M symbols and a number of instances of a second value in the set of M symbols, and, if an imbalance is detected, that asserts an error condition.