Abstract:
To provide a semiconductor device in which the threshold value is controlled. Furthermore, to provide a semiconductor device in which a deterioration in electrical characteristics which becomes more noticeable as a transistor is miniaturized can be suppressed. The semiconductor device includes a first semiconductor film, a source electrode and a drain electrode electrically connected to the first semiconductor film, a gate insulating film, and a gate electrode in contact with the gate insulating film. The gate insulating film includes a first insulating film and a trap film, and charge is trapped in a charge trap state in an interface between the first insulating film and the trap film or inside the trap film.
Abstract:
To provide a highly reliable semiconductor device including an oxide semiconductor by suppression of change in its electrical characteristics. Oxygen is supplied from a base insulating layer provided below an oxide semiconductor layer and a gate insulating layer provided over the oxide semiconductor layer to a region where a channel is formed, whereby oxygen vacancies which might be generated in the channel are filled. Further, extraction of oxygen from the oxide semiconductor layer by a source electrode layer or a drain electrode layer in the vicinity of the channel formed in the oxide semiconductor layer is suppressed, whereby oxygen vacancies which might be generated in a channel are suppressed.
Abstract:
A highly reliable semiconductor device including an oxide semiconductor is provided. Oxygen is supplied from a base insulating layer provided below an oxide semiconductor layer to a channel formation region, whereby oxygen vacancies which might be generated in the channel formation region are filled. Further, a protective insulating layer containing a small amount of hydrogen and functioning as a barrier layer having a low permeability to oxygen is formed over the gate electrode layer so as to cover side surfaces of an oxide layer and a gate insulating layer that are provided over the oxide semiconductor layer, whereby release of oxygen from the gate insulating layer and/or the oxide layer is prevented and generation of oxygen vacancies in a channel formation region is prevented.
Abstract:
Provided is a miniaturized transistor with stable and high electrical characteristics with high yield. In a semiconductor device including the transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode layer are stacked in this order, a first sidewall insulating layer is provided in contact with a side surface of the gate electrode layer, and a second sidewall insulating layer is provided to cover a side surface of the first sidewall insulating layer. The first sidewall insulating layer is an aluminum oxide film in which a crevice with an even shape is formed on its side surface. The second sidewall insulating layer is provided to cover the crevice. A source electrode layer and a drain electrode layer are provided in contact with the oxide semiconductor film and the second sidewall insulating layer.
Abstract:
Stable electrical characteristics and high reliability are provided for a miniaturized semiconductor device including an oxide semiconductor, and the semiconductor device is manufactured. The semiconductor device includes a base insulating layer; an oxide stack which is over the base insulating layer and includes an oxide semiconductor layer; a source electrode layer and a drain electrode layer over the oxide stack; a gate insulating layer over the oxide stack, the source electrode layer, and the drain electrode layer; a gate electrode layer over the gate insulating layer; and an interlayer insulating layer over the gate electrode layer. In the semiconductor device, the defect density in the oxide semiconductor layer is reduced.
Abstract:
In a semiconductor device in which a channel formation region is included in an oxide semiconductor layer, an oxide insulating film below and in contact with the oxide semiconductor layer and a gate insulating film over and in contact with the oxide semiconductor layer are used to supply oxygen of the gate insulating film, which is introduced by an ion implantation method, to the oxide semiconductor layer.
Abstract:
A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. The semiconductor device includes an oxide semiconductor film over an insulating surface, an antioxidant film over the insulating surface and the oxide semiconductor film, a pair of electrodes in contact with the antioxidant film, a gate insulating film over the pair of electrodes, and a gate electrode which is over the gate insulating film and overlaps with the oxide semiconductor film. In the antioxidant film, a width of a region overlapping with the pair of electrodes is longer than a width of a region not overlapping with the pair of electrodes.
Abstract:
Provided is a miniaturized transistor with stable and high electrical characteristics with high yield. In a semiconductor device including the transistor in which an oxide semiconductor film, a gate insulating film, and a gate electrode layer are stacked in this order, a first sidewall insulating layer is provided in contact with a side surface of the gate electrode layer, and a second sidewall insulating layer is provided to cover a side surface of the first sidewall insulating layer. The first sidewall insulating layer is an aluminum oxide film in which a crevice with an even shape is formed on its side surface. The second sidewall insulating layer is provided to cover the crevice. A source electrode layer and a drain electrode layer are provided in contact with the oxide semiconductor film and the second sidewall insulating layer.
Abstract:
A transistor having high field-effect mobility is provided. A transistor having stable electrical characteristics is provided. A transistor having small current in an off state (in a non-conductive state) is provided. A semiconductor device including such a transistor is provided. A first electrode is formed over a substrate, a first insulating layer is formed adjacent to a side surface of the first electrode, and a second insulating layer is formed to cover the first insulating layer and be in contact with at least part of a surface of the first electrode. The surface of the first electrode is formed of a conductive material that does not easily transmit an impurity element. The second insulating layer is formed of an insulating material that does not easily transmit an impurity element. An oxide semiconductor layer is formed over the first electrode with a third insulating layer provided therebetween.
Abstract:
A semiconductor device which has stable electrical characteristics and high reliability is provided. The semiconductor device includes a gate electrode over an insulating surface, a gate insulating film over the gate electrode, a semiconductor film which is over the gate insulating film and overlaps with the gate electrode, and a protective insulating film over the semiconductor film; and the protective insulating film includes a crystalline insulating film and an aluminum oxide film over the crystalline insulating film.