Abstract:
A silicon germanium alloy layer is formed on a semiconductor material layer by epitaxy. An oxygen impermeable layer is formed on the silicon germanium alloy layer. The oxygen impermeable layer and the silicon germanium alloy layer are patterned to form stacks of a silicon germanium alloy fin and an oxygen impermeable cap. A shallow trench isolation structure is formed by deposition, planarization, and recessing or an oxygen permeable dielectric material. An oxygen impermeable spacer is formed around each stack of a silicon germanium alloy fin and an oxygen impermeable cap. A thermal oxidation process is performed to convert a lower portion of each silicon germanium alloy fin into a silicon germanium oxide. During the thermal oxidation process, germanium atoms diffuse into unoxidized portions of the silicon germanium alloy fins to increase the germanium concentration therein.
Abstract:
Methods and structures having increased fin density are disclosed. Structures with two sets of fins are provided. A lower set of fins is interleaved with an upper set of fins in a staggered manner, such that the lower set of fins and upper set of fins are horizontally and vertically non-overlapping.
Abstract:
A semiconductor device comprises an insulation layer, an active semiconductor layer formed on an upper surface of the insulation layer, and a plurality of fins formed on the insulation layer. The fins are formed in the gate and spacer regions between a first source/drain region and second source/drain region, without extending into the first and second source/drain regions.
Abstract:
A method of forming a semiconductor device includes forming an insulator layer over a substrate; opening a trench in the insulator layer so as to expose one or more semiconductor structures formed on the substrate; forming a protective layer on sidewalls of the trench; subjecting the substrate to a precleaning operation in preparation for epitaxial semiconductor formation, wherein the protective layer prevents expansion of the sidewalls of the trench as a result of the precleaning operation; and forming epitaxial semiconductor material within the trench and over the exposed one or more semiconductor structures.
Abstract:
A method for semiconductor fabrication includes patterning one or more mandrels over a semiconductor substrate, the one or more mandrels having dielectric material formed therebetween. A semiconductor layer is formed over exposed portions of the one or more mandrels. A thermal oxidation is performed to diffuse elements from the semiconductor layer into an upper portion of the one or more mandrels and concurrently oxidize a lower portion of the one or more mandrels to form the one or more mandrels on the dielectric material.
Abstract:
A semiconductor device having a doped well area includes a doped substrate layer formed on a substrate portion of the semiconductor device. The doped substrate layer extends along a first direction to define a length and a second direction perpendicular to the first direction to define a width. A plurality of fins is formed on the doped substrate layer and an oxide substrate layer is formed between each fin. At least one gate is formed on the oxide substrate layer and extends across at least one fin among the plurality of fins.
Abstract:
After formation of a replacement gate structure, a template dielectric layer employed to pattern the replacement gate structure is removed. After deposition of a dielectric liner, a first dielectric material layer is deposited by an anisotropic deposition and an isotropic etchback. A second dielectric material layer is deposited and planarized employing the first dielectric material portion as a stopping structure. The first dielectric material portion is removed selective to the second dielectric material layer, and is replaced with gate cap dielectric material portion including at least one dielectric material different from the materials of the dielectric material layers. A contact via hole extending to a source/drain region is formed employing the gate cap dielectric material portion as an etch stop structure. A contact via structure is spaced from the replacement gate structure at least by remaining portions of the gate cap dielectric material portion.
Abstract:
Methods for forming inductors. The methods include forming sidewalls around a mandrel over a conductor layer; removing material from the conductor layer around a region defined by the sidewalls; removing the mandrel; partially etching the conductor layer in a region between the sidewalls; etching the partially etched conductor layer to form separate metal segments; depositing a dielectric material in and around the metal segments; and forming conductive lines between exposed contacts of adjacent metal segments.
Abstract:
A transistor device and a method for forming a fin-shaped field effect transistor (FinFET) device, with the channel portion of the fins on buried silicon oxide, while the source and drain portions of the fins on silicon. An example method includes receiving a wafer with a silicon layer electrically isolated from a silicon substrate by a buried oxide (BOX) layer. The BOX layer is in physical contact with the silicon layer and the silicon substrate. The method further comprises implanting a well in the silicon substrate and forming vertical sources and drains over the well between dummy gates. The vertical sources and drains extend through the BOX layer, fins, and a portion of the dummy gates.
Abstract:
A method for forming a fin device includes forming semiconductor fins over a first dielectric layer. A second dielectric layer is directionally deposited into or on the first dielectric layer and on tops of the fins on horizontal surfaces. The second dielectric layer is configured to protect the first dielectric layer in subsequent processing. Sidewalls of the fins are precleaned while the first dielectric layer is protected by the second dielectric layer. The second dielectric layer is removed to expose the first dielectric layer in a protected state.