Abstract:
A first photoresist layer is patterned with a first pattern that includes an opening in a region between areas of two adjacent via holes to be formed. The opening in the first photoresist is transferred into a template layer to form a line trench therein. The lateral dimension of the trench is reduced by depositing a contiguous spacer layer that does not fill the trench completely. An etch-resistant material layer is conformally deposited and fills the trench, and is subsequently recessed to form an etch-resistant material portion filling the trench. A second photoresist layer is applied and patterned with a second pattern, which includes an opening that includes areas of two via holes and an area therebetween. A composite pattern of an intersection of the second pattern and the complement of the pattern of the etch-resistant material portion is transferred through the template layer.
Abstract:
Semiconductor devices having non-merged fin extensions. A semiconductor device includes fins formed in trenches in an insulator layer, each of the fins having a uniform crystal orientation and a fin cap in a source and drain region that extends vertically and laterally beyond the trench. The fin caps of the respective fins are separate from one another.
Abstract:
A process for etching a bulk integrated circuit substrate to form features on the substrate, such as fins, having substantially vertical walls comprises forming an etch stop layer beneath the surface of the substrate by ion implantation, e.g., carbon, oxygen, or boron ions or combinations thereof, masking the surface with a patterned etching mask that defines the features by openings in the mask to produce a masked substrate and etching the masked substrate to a level of the etch stop layer to form the features. In silicon substrates, ion implantation takes place along a silicon crystalline lattice beneath the surface of the substrate. The etchant comprises a halogen material that etches undoped silicon faster than the implants-rich silicon layer. This produces a circuit where the fins do not taper away from the vertical where they meet the substrate, and corresponding products and articles of manufacture having these features.
Abstract:
A method for semiconductor fabrication includes providing mask layers on opposite sides of a substrate, the substrate having one or more mandrels. Dummy spacers are formed along a periphery of the mask layers. A dummy gate structure is formed between the dummy spacers. The dummy spacers are removed to provide a recess. Low-k spacers are formed in the recess.
Abstract:
A method for semiconductor fabrication includes providing mask layers on opposite sides of a substrate, the substrate having one or more mandrels. Dummy spacers are formed along a periphery of the mask layers. A dummy gate structure is formed between the dummy spacers. The dummy spacers are removed to provide a recess. Low-k spacers are formed in the recess.
Abstract:
Semiconductor devices having non-merged fin extensions and methods for forming the same. Methods for forming semiconductor devices include forming fins on a substrate; forming a dummy gate over the fins, leaving a source and drain region exposed; etching the fins below a surface level of a surrounding insulator layer; and epitaxially growing fin extensions from the etched fins.
Abstract:
In one embodiment, a semiconductor device is provided that includes a gate structure present on a channel portion of a fin structure. The gate structure includes a dielectric spacer contacting a sidewall of a gate dielectric and a gate conductor. Epitaxial source and drain regions are present on opposing sidewalls of the fin structure, wherein surfaces of the epitaxial source region and the epitaxial drain region that is in contact with the sidewalls of the fin structure are aligned with an outside surface of the dielectric spacer. In some embodiments, the dielectric spacer, the gate dielectric, and the gate conductor of the semiconductor device are formed using a single photoresist mask replacement gate sequence.
Abstract:
A method for DSA fin patterning includes forming a BCP layer over a lithographic stack, the BCP layer having first and second blocks, the lithographic stack disposed over a hard mask and substrate, and the hard mask including first and second dielectric layers; removing the first block to define a fin pattern in the BCP layer with the second block; etching the fin pattern into the first dielectric layer; filling the fin pattern with a tone inversion material; etching back the tone inversion material that overfills the fin pattern; removing the first dielectric layer selectively to define an inverted fin pattern from the tone inversion material; etching the inverted fin pattern into the second dielectric layer of the hard mask; removing the tone inversion material; and transferring the inverted fin pattern of the second dielectric layer into the substrate to define fins.
Abstract:
A method of fabricating a semiconductor device includes forming at least one semiconductor fin on a semiconductor substrate. A cladding layer is epitaxially grown on a portion of the at least one semiconductor fin. The cladding layer is oxidized such that r such that ions are condensed therefrom and are diffused into the at least one semiconductor fin while the cladding layer is converted to an oxide layer. The oxide layer is removed to expose the at least one semiconductor fin having a diffused fin portion that enhances electron hole mobility therethrough.
Abstract:
A silicon germanium alloy layer is formed on a semiconductor material layer by epitaxy. An oxygen impermeable layer is formed on the silicon germanium alloy layer. The oxygen impermeable layer and the silicon germanium alloy layer are patterned to form stacks of a silicon germanium alloy fin and an oxygen impermeable cap. A shallow trench isolation structure is formed by deposition, planarization, and recessing or an oxygen permeable dielectric material. An oxygen impermeable spacer is formed around each stack of a silicon germanium alloy fin and an oxygen impermeable cap. A thermal oxidation process is performed to convert a lower portion of each silicon germanium alloy fin into a silicon germanium oxide. During the thermal oxidation process, germanium atoms diffuse into unoxidized portions of the silicon germanium alloy fins to increase the germanium concentration therein.