Abstract:
Techniques and structures for controlling etch-back of a finFET fin are described. One or more layers may be deposited over the fin and etched. Etch-back of a planarization layer may be used to determine a self-limited etch height of one or more layers adjacent the fin and a self-limited etch height of the fin. Strain-inducing material may be formed at regions of the etched fin to induce strain in the channel of a finFET.
Abstract:
A technique relates to fabricating a macro for measurements utilized in dual spacer, dual epitaxial transistor devices. The macro is fabricated according to a fabrication process. The macro is a test layout of a semiconductor structure having n-p bumps at junctions between NFET areas and PFET areas. Optical critical dimension (OCD) spectroscopy is performed to obtain the measurements of the n-p bumps on the macro. An amount of chemical mechanical polishing is determined to remove the n-p bumps on the macro based on the measurements of the n-p bumps on the macro. Chemical mechanical polishing is performed to remove the n-p bumps on the macro. The amount previously determined for the macro is utilized to perform chemical mechanical polishing for each of the dual spacer, dual epitaxial layer transistor devices having been fabricated under the fabrication process of the macro in which the fabrication process produced the n-p bumps.
Abstract:
In forming a finFET, a selective nitridation process is used during spacer formation on the gate to support a finer fin pitch than could be achieved using traditional spacer deposition processes. The spacer formation may also allow precise control over formation of source and drain junctions.
Abstract:
A semiconductor device which includes: a substrate; a first set of fins above the substrate of a first semiconductor material; a second set of fins above the substrate and of a second semiconductor material different than the first semiconductor material; and an isolation region positioned between the first and second sets of fins, the isolation region having a nitride layer. The isolation region may be an isolation pillar or an isolation trench.
Abstract:
An integrated circuit transistor is formed on a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region in the substrate which is in electrical connection with the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate may be of the silicon on insulator (SOI) or bulk type. The buried source (or drain) contact makes electrical connection to a side of the source (or drain) region using a junction provided at a same level of the substrate as the source (or drain) and channel regions.
Abstract:
A vertical slit transistor includes raised source, drain, and channel regions in a semiconductor substrate. Two gate electrodes are positioned adjacent respective sidewalls of the semiconductor substrate. A dielectric material separates the gate electrodes from the source and drain regions.
Abstract:
A high performance GAA FET is described in which vertically stacked silicon nanowires carry substantially the same drive current as the fin in a conventional FinFET transistor, but at a lower operating voltage, and with greater reliability. One problem that occurs in existing nanowire GAA FETs is that, when a metal is used to form the wraparound gate, a short circuit can develop between the source and drain regions and the metal gate portion that underlies the channel. The vertically stacked nanowire device described herein, however, avoids such short circuits by forming insulating barriers in contact with the source and drain regions, prior to forming the gate. Through the use of sacrificial films, the fabrication process is almost fully self-aligned, such that only one lithography mask layer is needed, which significantly reduces manufacturing costs.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate, and a gate overlying the semiconductor fins. The gate has a tapered outer surface. A first pair of sidewall spacers is formed adjacent the gate an exposed tapered outer surface is also defined. Portions of the gate are removed at the exposed tapered outer surface to define a recess. A second pair of sidewall spacers is formed covering the first pair of sidewall spacers and the recess. Source/drain regions are formed on the semiconductor fins.
Abstract:
A method for making a semiconductor device may include forming, above a substrate, a plurality of laterally spaced-apart semiconductor fins, and forming regions of a first dielectric material between the laterally spaced-apart semiconductor fins. The method may further include selectively removing at least one intermediate semiconductor fin from among the plurality of semiconductor fins to define at least one trench between corresponding regions of the first dielectric material, and forming a region of a second dielectric material different than the first dielectric in the at least one trench to provide at least one isolation pillar between adjacent semiconductor fins.
Abstract:
A method for making a semiconductor device may include forming a gate on a semiconductor layer, forming sidewall spacers adjacent the gate, and forming raised source and drain regions defining a channel in the semiconductor layer under the gate. The raised source and drain regions may be spaced apart from the gate by the sidewall spacers. The method may further include removing the sidewall spacers to expose the semiconductor layer between the raised source and drain regions and the gate, and forming a stress layer overlying the gate and the raised source and drain regions. The stress layer may contact the semiconductor layer between the raised source and drain regions and the gate.