Abstract:
A method of fabricating a semiconductor device. The method comprises subjecting a substrate having formed thereon photoresist layer to a plasma hydrogen, the substrate further having formed thereon a sacrificial layer; contacting the photoresist layer with a photoresist removal solution; subjecting the sacrificial layer to a plasma hydrogen; and contacting the sacrificial material layer with an etchant solution.
Abstract:
A method and apparatus for matching impedance magnitude and impedance phase for an acoustic- wave transducer load and an RF power source. The acoustic-wave transducer load has a load impedance magnitude and phase. The RF power source has a source impedance magnitude and phase. In one embodiment of the invention, a transformer matches the source and load impedance magnitudes. A capacitor, connected in series with the transformer, matches the source impedance phase to the load impedance phase.
Abstract:
Apparatuses and methods of processing a substrate. The apparatus includes a wet-cleaning chamber, a drying chamber, and a substrate transferring chamber which transfers a substrate to and from the wet-cleaning chamber and the drying chamber. The drying chamber is one of a supercritical drying chamber or a low pressure drying chamber. The wet-cleaning chamber is one of a single-wafer cleaning chamber, a horizontal spinning chamber, a megasonic wet-cleaning chamber, or a horizontal spinning chamber having acoustic waves transmitted to the substrate.
Abstract:
The present invention provides methods of reducing particle contamination during wet processing of semiconductor substrates. In one embodiment of the present invention, a surfactant is added to any processing solution having a gas-liquid interface that the semiconductor substrates will be contacted with during immersion. The surfactant reduces the contact angle of the processing solution to less than 90° and inhibits deposition of particles onto the semiconductor substrates during immersion. In a preferred embodiment of the present invention, the semiconductor substrates are contacted with only one gas-liquid interface during wet processing that occurs during the immersion of the semiconductor substrates in an initial liquid processing solution. In this embodiment, the last processing solution in contact with the semiconductor substrates is removed by displacement with a drying fluid stream.
Abstract:
Methods and apparatus for forming substrates having magnetically patterned surfaces is provided. A magnetic layer comprising one or more materials having magnetic properties is formed on a substrate. The magnetic layer is subjected to a patterning process in which selected portions of the surface of the magnetic layer are altered such that the altered portions have different magnetic properties from the non-altered portions without changing the topography of the substrate. A protective layer and a lubricant layer are deposited over the patterned magnetic layer. The patterning is accomplished through a number of processes that expose substrates to energy of varying forms. Apparatus and methods disclosed herein enable processing of two major surfaces of a substrate simultaneously, or sequentially by flipping. In some embodiments, magnetic properties of the substrate surface may be uniformly altered by plasma exposure and then selectively restored by exposure to patterned energy.
Abstract:
A method of removing a high molecular weight organic-comprising hard mask or BARC from a surface of a porous low k dielectric material, where a change in the dielectric constant of the low k dielectric material is less than about 5% after application of the method. The method comprises exposing the organic-comprising hard mask or BARC to nitric acid vapor which contains at least 68% by mass HNO3.
Abstract:
Embodiments disclosed herein generally relate to a process of depositing a transparent conductive oxide layer over a substrate. The transparent oxide layer is sometimes deposited onto a substrate for later use in a solar cell device. The transparent conductive oxide layer may be deposited by a “cold” sputtering process. In other words, during the sputtering process, a plasma is ignited in the processing chamber which naturally heats the substrate. No additional heat is provided to the substrate during deposition such as from the susceptor. After the transparent conductive oxide layer is deposited, the substrate may be annealed and etched, in either order, to texture the transparent conductive oxide layer. In order to tailor the shape of the texturing, different wet etch chemistries may be utilized. The different etch chemistries may be used to shape the surface of the transparent conductive oxide and the etch rate.
Abstract:
A method of removing resist material from a substrate having a magnetically active surface is provided. The substrate is disposed in a processing chamber and exposed to a fluorine-containing plasma formed from a gas mixture having a reagent, an oxidizing agent, and a reducing agent. A cleaning agent may also be included. The substrate may be cooled by back-side cooling or by a cooling process wherein a cooling medium is provided to the processing chamber while the plasma treatment is suspended. Substrates may be flipped over for two-sided processing, and multiple substrates may be processed concurrently.
Abstract:
Embodiments of the invention are directed to photovoltaic cells comprising a substantially optically transparent buffer layer on a superstrate and a photoabsorber layer on the buffer layer. The buffer layer of detailed embodiments has a work function greater than or equal to about the work function of the photoabsorber layer. Additional embodiments of the invention are directed to photovoltaic modules comprises a plurality of photovoltaic cells and methods of making photovoltaic cells and photovoltaic modules.
Abstract:
Processes and apparatus of forming patterns including magnetic and non-magnetic domains on a magnetically susceptible surface on a substrate are provided. In one embodiment, a method of forming a pattern of magnetic domains on a magnetically susceptible material disposed on a substrate includes exposing a first portion of a magnetically susceptible layer to a plasma formed from a gas mixture, wherein the gas mixture includes at least a halogen containing gas and a hydrogen containing gas for a time sufficient to modify a magnetic property of the first portion of the magnetically susceptible layer exposed through a mask layer from a first state to a second state.