摘要:
A method of manufacturing a semiconductor device, comprises the steps of: forming a first insulating film on a first substrate; forming a second insulating film on the first insulating film; forming an amorphous silicon film on the second insulating film; holding a metal element that promotes the crystallization of silicon in contact with a surface of the amorphous silicon film; crystallizing the amorphous silicon film through a heat treatment to obtain a crystalline silicon film; forming a thin-film transistor using the crystalline silicon film; forming a sealing layer that seals the thin-film transistor; bonding a second substrate having a translucent property to the sealing layer; and removing the first insulating film to peel off the first substrate.
摘要:
A gate insulating film covering active layers of a insulated gate field effect semiconductor device utilizing a thin film silicon semiconductor comprises a thin film having the chemical formula SiO.sub.x N.sub.y. By making the concentration of N (nitrogen) high at the interface between the gate insulating film and the gate electrodes, it is possible to prevent the material composing the gate electrodes from being diffused in the gate insulating film. By making the concentration of N (nitrogen) high at the interface between the gate insulating film and the active layers, it is possible to prevent hydrogen ions and other ions from diffusing into the gate insulating film from the active layer.
摘要翻译:覆盖利用薄膜硅半导体的绝缘栅场效应半导体器件的有源层的栅极绝缘膜包括具有化学式SiO x N y的薄膜。 通过使栅极绝缘膜和栅电极之间的界面处的N(氮)浓度高,可以防止构成栅电极的材料在栅绝缘膜中扩散。 通过使栅极绝缘膜和有源层之间的界面处的N(氮)浓度高,可以防止氢离子等离子从活性层扩散到栅极绝缘膜。
摘要:
An electronic apparatus comprising a material having photoconductivity, an energy bandgap, and trap levels. The material is typified by a thin film of polycrystalline diamond. The material is illuminated with first light having photon energies smaller than the energy bandgap of the material. Then, the material is illuminated with second light having photon energies greater than the energy bandgap of the material to thereby induce a photocurrent. The amount of the first light can be known by measuring the induced photocurrent.
摘要:
A method of heat-treating a glass substrate where the substrate is thermally treated (such as the formation of films, growth of films, and oxidation) around or above its strain point. After thermally treating the substrate around or above its strain point the glass substrate may be slowly cooled at a rate of 0.01.degree. to 0.5.degree. C./min to achieve maximum shrinkage of the substrate. Following further thermal treatments the substrate may be quickly cooled at a rate of 10.degree. C./min to 300.degree. C./sec to suppress shrinkage of the glass substrate. The substrate can have films such as aluminum nitrate films, silicon oxide films, silicon films, insulating films, semiconductor films, etc. Film formation can occur either before or after thermal treatment of the substrate around or above its strain point and before further thermal treatments.
摘要:
A thin film transistor with high performance and improved productivity is offered using crystalline silicon film. As the crystalline silicon film that constitutes the active layer of thin film transistor, the one which has irregularities of 100 to 700 .ANG. in level difference is used. Such crystalline silicon film can be obtained by performing laser light irradiation.
摘要:
In an insulated gate type field effect semiconductor device having a thin silicon semiconductor film, the gate insulating film that covers the active layer is a thin film consisting essentially of silicon, oxygen and nitrogen. In the gate insulating film in the device, the nitrogen content is made the largest in the interface between the film and the adjacent gate electrode, and the material constituting the gate electrode is prevented from being diffused into the gate insulating film. In the film, the nitrogen content is made the largest in the interface between the film and the adjacent active layer, and hydrogen ions, etc. are prevented from being diffused from the active layer into the gate insulating film. Prior to the formation of the gate insulating film, the surface of the active layer is irradiated to laser rays or intense rays comparable to laser rays, so as to be oxidized or nitrided.
摘要:
There is provided a gas sensor element for detecting the concentration of a specific gas component in gas under measurement, which includes a plate-shaped element body and a porous protection layer. The element body has, at one end portion thereof, a gas sensing portion formed with a solid electrolyte substrate and a pair of electrodes. The porous protection layer has a porous structure formed of ceramic particles and surrounds at least the circumference of the one end portion of the element body. In the present invention, the porous protection layer has an inner region, an intermediate region and an outer region laminated together in order of mention from the element body toward the outside. The intermediate region has a porosity lower than those of the inner and outer regions. There is also provided a gas sensor with such a gas sensor element.
摘要:
A pair of substrates forming the active matrix liquid crystal display are fabricated from resinous substrates having transparency and flexibility. A thin-film transistor has a semiconductor film formed on a resinous layer formed on one resinous substrate. The resinous layer is formed to prevent generation of oligomers on the surface of the resinous substrate during formation of the film and to planarize the surface of the resinous substrate.
摘要:
A sensor control device for controlling a current application state of a gas sensor element when measuring a specific gas component concentration in a gas to be measured using the gas sensor element, which sensor control device includes: at least one cell having a solid electrolyte body and a pair of electrodes; a sensor heating unit as defined herein; an oxygen reference pole generating unit as defined herein; a damage avoidance time elapse determining unit as defined herein; and a reference generation current application permitting unit as defined herein.
摘要:
There are disclosed TFTs having improved reliability. An interlayer dielectric film forming the TFTs is made of a silicon nitride film. Other interlayer dielectric films are also made of silicon nitride. The stresses inside the silicon nitride films forming these interlayer dielectric films are set between −5×109 and 5×109 dyn/cm2. This can suppress peeling of the interlayer dielectric films and difficulties in forming contact holes. Furthermore, release of hydrogen from the active layer can be suppressed. In this way, highly reliable TFTs can be obtained.