Abstract:
Methods and apparatus for compact and easily maintainable waste reformation. Some embodiments include a rotary oven reformer adapted and configured to provide synthesis gas from organic waste. Some embodiments include a rotary oven with simplified operation both as to reformation of the waste, usage of the synthesized gas and other products, and easy removal of the finished waste products, preferably in a unit of compact size for use in austere settings. Yet other embodiments include Fischer-Tropsch reactors of synthesized gas. Some of these reactors include heat exchanging assemblies that provide self-cleaning effects, efficient utilization of waste heat, and ease of cleaning.
Abstract:
Systems and methods achieve the conversion of polymer containing material into petroleum products such as hydrocarbon gas, wax, crude oil and diesel. The reactor and its system are designed to subject the polymer containing material to pyrolysis in a way that results in a higher petroleum product yield than conventional existing systems. The system has controls which allow for the heating temperature, rotation of the body, and throughput rate, to be adjusted depending on the reaction time required for the material inside the reactor. The condensing system is able to separate the products into the desired petroleum products by percentage output ranging from wax to crude-like oil to diesel-quality oil.
Abstract:
Process for reclaiming useful products from a waste oil, comprising a thermal separation step performed in a vessel at conditions, of temperature and pressure, allowing to substantially avoid cracking of the waste oil and to assure the separation of said heated waste oil into a first heavy oil fraction and into a second light oil fraction having, in comparison with the waste oil, a low content in solids and/or in other contaminants that are different from water and from inert gas. The process is further characterized in that while, during the thermal separation treatment, the waste oil is heated to a temperature about the boiling temperature of the heavy oil fraction, and below the cracking temperature of the waste oil, and at a pressure that is preferably below the atmospheric pressure, the heavy oil fraction of the vapours existing the vessel, in contact with a cooler surface, condenses and falls back into the vessel, while the second fraction, in a gaseous state, is eventually submitted to at least one further separation treatment. When water is present in the waste oil, said water is used to improve the amount of recovered light oils; and/or when no water is present in the waste oil, water or at least one inert gas or at least one component that may become an inert gas by heating may be added to the waste oil or to the thermal separation unit. Uses of the process for environmental applications and for treating used oils and to prepare oil products. Systems for reclaiming useful products from waste oils comprising at least one rotating kiln and at least one self-refluxing condenser and/or at least one dephlegmator.
Abstract:
A method for processing plastic waste, in particular polyolefins, and a device for processing plastic waste, in particular polyolefins, are used especially in the industrial utilization of plastic waste. The method consists in that a primarily refined charge after being fed into a reactor (6) is fluidized and cracked during forced progressive-rotational movement coinciding with heating. A gas-steam fraction obtained during a utilization process is continuously guided out to a cooling system whereas impurities are periodically guided out from the reactor (6) to a waste tank (22).
Abstract:
A apparatus comprising: a vessel component comprising a flow-through interior chamber having an interior sidewall and an exterior sidewall; at least two inlets for introducing chemical components into the flow-through interior chamber; at least one outlet for removing product from the flow-through interior chamber; and an off center rotation component which is operatively connected to the vessel component. During operation of the apparatus, the off center rotation component generates vortical movement of at least two chemical components through the flow-through interior chamber of the vessel, and converts at least a portion of the at least two chemical components to at least one reaction product or product mixture. A method of using the apparatus to produce reaction products or product mixtures. The apparatus and method are useful for producing specialty chemicals such as fragrance and flavor compounds, insect pheromones, petrochemicals, pharmaceutical compounds, agrichemical compounds, and the like.
Abstract:
Provided are a method for producing sodium tungstate by supplying an oxidant made of sodium nitrate or sodium nitrite to bring a tungsten containing material and the oxidant into contact with each other in an atmosphere containing oxygen to thereby continuously produce a reaction product; a method for collecting tungsten using the method; and an apparatus for producing sodium tungstate. Also provided are a method for producing a sodium tungstate aqueous solution in which a reductant is introduced into a melt containing the above-described reaction product which is then dissolved in water; and a method for collecting tungsten using the method.
Abstract:
The invention relates to a reactor driven in an oscillatory-rotary manner about its fixed, preferably vertical, axis, for preferably biotechnological and pharmaceutical applications. By means of its process-intensifying properties for mixing, suspension, gaseous material transport, heat transfer, irradiation and particle retention, the applicability on the industrial scale is ensured. The reactor which succeeds without a shaft seal permits particularly robust production with respect to sterile technique with avoidance of cleaning and cleaning validation required when the reactor is constructed as a single-use reactor.
Abstract:
Device for carrying out a chemical or physical treatment, comprising a frame on which a turntable is arranged rotatably. The reaction vessels are arranged on the turntable, and a different connection between the feed/discharge lines, which are fixedly connected to the frame, and the reaction vessels is constantly provided via a valve assembly. The valve assembly comprises two disks, each provided with ports which are positioned opposite one another in constantly changing positions. In order to minimize the non-operational time, an indexing movement is carried out using the turntable. In the case of relatively large installations, to prevent associated forces from affecting the movement of the valve assembly, it is proposed that the valve assembly be fitted directly on the turntable and that the turntable be driven directly by the motor.