Abstract:
A system and method assist the driver of a motor vehicle in preventing accidents or minimizing the effects of same. In one form, a television camera is mounted on a vehicle and scans the roadway ahead of the vehicle as the vehicle travels. Continuously generated video picture signals output by the camera are electronically processed and analyzed by an image analyzing computer, which generates codes, that serve to identify obstacles. A decision computer mounted in the controlled vehicle receives such code signals along with code signals generated by the speedometer or one or more sensors sensing steering mechanism operation and generates control signals. Such code signals maybe displayed, and as synthetic speech or special sound generating and warning means used to warn the driver of the vehicle of approaching and existing hazards. The system may also use the control signals, particularly through application of fuzzy logic, to control the operation of the brakes and steering mechanism of the vehicle to avoid or lessen the effects of a collision. In a particular form, the decision computer may select the evasive action taken from a number of choices, depending on whether and where the detection device senses other vehicles or obstacles.
Abstract:
Apparatus for controlling dynamics of a vehicle determines a current course angle (α) of the vehicle. A desired course angle (αpsi) is defined and assigned to a first point on a temporal profile of a desired driving line. The first point is on the desired driving line at a first preview time from a location assigned to an instantaneous vehicle position. A course angle deviation of the current course angle (α) from the desired course angle (αpsi) is determined. A target angle (αta) is defined and assigned to a second point on the temporal profile of the desired driving line. The second point is on the desired driving line at a distance of a second preview time from the location. A steering wheel angle (δ) is determined as a total of the target angle (αta) reinforced with a first parameter and the course angle deviation reinforced with a second parameter.
Abstract:
A steering control system for a commercial vehicle having braking and steering systems. The braking system brakes dissymetrically side wheels of the vehicle. The steering system steers the vehicle based on a steering signal. The steering control system includes selection and control modules. The selection module switches between first and second steering modes. The first mode indicates steering of the vehicle by turning vehicle wheels. The second mode indicates steering of the vehicle by generating a braking signal for at least one wheel providing a yaw moment applied to the vehicle. The control module generates the first signal indicating a steering demand in the first mode and a second signal indicating a steering demand in the second mode. The control module provides the first signal to the steering system and the second signal to the braking system to brake the vehicle dissymetrically to steer the vehicle with the yaw moment.
Abstract:
A method for open-loop or closed-loop control of a driver assistance system of a vehicle, including: a) using a first sensor device to detect from a roadway at least one lane and a roadway marking that separates the lane from an edge of the roadway; b) using a second sensor device to detect operation of at least one operating device of the vehicle that influences the driving dynamics of the vehicle by virtue of the driver; c) using steering actuators and/or brake actuators to influence the driving dynamics of the vehicle; and d) outputting, if there is a threat of the vehicle leaving the lane, as detected by the first sensor device, a first warning signal. A related driver assistance system is also described.
Abstract:
There is provided a vehicle control system capable of ensuring stability even if a vehicle spins slowly. The invention recognizes a travel-path defining line of a travel path from information about an area located in the traveling direction of an ego vehicle, recognizes a traveling-direction virtual line extending from the ego vehicle in the traveling direction, and controls vehicle motion to reduce a formed angle between the traveling-direction virtual line and the travel-path defining line at least when the formed angle increases.
Abstract:
A device for keeping a vehicle in its lane, including a reference model, which obtains geometric data regarding the position of the vehicle in the lane as well as data relating to the course of the lane from a lane detection system, and from these calculates a setpoint variable for controlling the vehicle position. In order to allow for corners to be cut, the guiding behavior of the control system is modified in such a way when cornering that, in the event of a deviation of the path of motion of the vehicle from the setpoint path of motion in the direction of the inside of the curve, no or only low steering forces are applied to the steering system.
Abstract:
A driving aid system is provided for assisting a motor vehicle during a change of lane. The system includes a device monitoring the lateral side space and a device monitoring the directional stability. The lateral space monitoring device is designed to determine the degree of risk (for example, two levels: dangerous/not dangerous, or three levels: low/medium/high risk) represented by a change of lane. At the high risk level, a first driving aid reaction occurs, at least in the form of a counter-steering, which is regulated by a link existing between the lateral space monitoring device and the directional stability monitoring device and is expressed by a reorientation towards the specific traffic lane or by maintaining the directional stability. At the low risk level, a second driving-aid reaction is triggered, which is less perceptible and depends on the degree of likelihood of the intention to change lane.
Abstract:
A collision avoidance ECU estimates a traveling locus based on an estimated curve radius of an own vehicle in a basic traveling locus estimating unit, and in a changed traveling locus estimating unit, obtains separation distances between an own vehicle and white lines based on the relative positional relationship between an own vehicle and the white lines, and estimates, as a changed traveling locus, a route along the white lines with the obtained separation distances maintained. In a collision judging unit, when auto-steering control and departure warning control are not performed, collision judgment is performed based on the basic traveling locus estimated in the basic traveling locus estimating unit, and when the auto-steering control and departure warning control are performed, the traveling locus is changed to the changed traveling locus estimated in the changed traveling locus estimating unit and collision judgment is performed.
Abstract:
A conventional brake control can generate only a small yaw moment compared with a steering control, so that reliable avoidance of obstacles cannot be obtained. With a steering control, the driver gets behind the wheel every time when crossing a lane and has an uncomfortable feeling. To solve these problems, a traveling aid device comprises: a detection unit for detecting the traveling state of a vehicle, the position of a lane marker, and the positions and types of obstacles around the vehicle; a calculation unit for calculating, based on the traveling state of the vehicle, the position of the lane marker, and the positions and types of the surrounding obstacles, a target yaw moment so as to prevent a departure from the lane marker and a collision with the surrounding obstacles; and a distribution unit for distributing, based on at least one of the traveling state of the vehicle, the position of the lane marker, and the positions and types of the surrounding obstacles, the target moment to a first actuator for controlling the driving/braking force and a second actuator for controlling the steering.
Abstract:
An apparatus and method are described for lateral control of a host vehicle (F) during travel in a vehicle platoon. The apparatus and method include acquiring a control signal u and a lateral error ε relative to a target vehicle (L) of a preceding vehicle (T) travelling in the vehicle platoon, filtering the received lateral error ε, filtering the received control signal u, and executing via a processor a control algorithm for actuating lateral control of the host vehicle (F).