Abstract:
A system of using a drone for network connectivity, the system may comprise: a connectivity module to: detect an error associated with network traffic on a network connection utilized by a user device; query a connection datastore to retrieve at least one access point location that at least one device of the user has utilized within a predetermined period; a drone coordination module to: transmit configuration settings to a drone, the configuration settings including the at least one access point location and a mode of operation for the drone; and route at least a portion of the network traffic of the user device to the drone for transmission according to the configuration settings.
Abstract:
An automated mobile vehicle configured to autonomously provide coverage for inoperable infrastructure components at various locations. For example, a plurality of automated mobile vehicles may be deployed to provide emergency lighting, a wireless network, audio, video, etc., at an event area. The event area may be indoors and/or outdoors.
Abstract:
An automated mobile vehicle configured to autonomously provide coverage for inoperable infrastructure components at various locations. A plurality of automated mobile vehicles may be deployed to provide emergency lighting, a wireless network, audio, video, etc., at an event area. The event area may be indoors and/or outdoors.
Abstract:
A payload drag structure having a drag disk comprised of a lightweight, flexible material, a tubular section positioned around a periphery of the drag disk, a flexible member positioned within the tubular section, a cross member having a plurality of aims attached about the periphery of the drag disk, wherein one or more arms of the cross member are adapted for attachment to a payload harness, wherein the payload harness is adapted for attachment to arms of the cross member, and wherein a payload may be secured within the payload harness.
Abstract:
An armored vehicle includes: a basic armored vehicle having a predetermined basic external armor; a modularized armor structure exchangeably attached to the basic external armor; and an unmanned aerial vehicle loaded on the modularized armor structure. The modularized armor structure includes: an unmanned aerial vehicle loading section configured to load the unmanned aerial vehicle; an armoring material structure formed of armoring material; and an attaching section used to exchangeably attach the modularized armor structure to the basic armored vehicle.
Abstract:
Methods and systems are provided for relocatable repeaters for wireless communication links to locations that may present accessibility problems using, for example, small unmanned aerial systems (sUAS). An sUAS implemented as an easy-to-operate, small vertical take-off and landing (VTOL) aircraft with hovering capability for holding station position may provide an extended range, highly secure, high data rate, repeater system for extending the range of point-to-point wireless communication links (also referred to as “crosslinks”) in which repeater locations are easily relocatable with very fast set-up and relocating times. A repeater system using beam forming and power combining techniques enables a very high gain antenna array with very narrow beam width and superb pointing accuracy. The aircraft includes a control system enabling three-dimensional pointing and sustaining directivity of the beam independently of flight path of the aircraft.
Abstract:
A communication system is described. The system includes: at least one gateway able to provide broadband connectivity, a set of ground terminals, and a set of high altitude platforms (HAPs), where at least one aerial platform is able to communicate with at least one gateway using radio frequencies, each HAP is able to communicate with ground terminals using radio frequencies, and each HAP is able to communicate with each other HAP using radio frequencies. Ways to handoff a ground terminal/gateway from one HAP beam to another HAP beam are described. Ways to handoff a ground terminal/gateway from one HAP to another HAP are described. Ways that keep the communications payload radios active when there is data traffic and put the radios in sleep mode otherwise, thereby adjusting the communications payload power consumption to the data traffic requirements as a function of time and coverage area, are described.
Abstract:
A method of launching a powered unmanned aerial vehicle, the method comprising lifting the vehicle by attachment to a lighter-than-air carrier from a substantially ground-level location to an elevated altitude, wherein the vehicle is prevented from entering its flight mode during ascent, causing the vehicle to detach from the carrier while the velocity of the vehicle relative to the carrier is substantially zero, the vehicle thereafter decreasing in altitude as it accelerates to a velocity where it is capable of preventing any further descent and can begin independent sustained flight.
Abstract:
A sensor for monitoring a plant population in front of a harvester and a transfer process of the crop from the harvester to a transport vehicle is arranged on an unmanned aircraft. The aircraft moves in the vicinity of the harvester in the harvesting mode and communicates in a wireless fashion with a control unit that controls an actuator for influencing an operating parameter of the harvester and/or the transport vehicle (in real time based on signals of the sensor in the harvesting mode.
Abstract:
A high-altitude unmanned stratosphere aerial vehicle includes a fuselage, wings, control surfaces, and a propulsion system including an engine and a propeller. Each wing has a plurality of hoses and wing spars extending in a direction perpendicularly to the longitudinal fuselage axis and are surrounded by a skin forming a wing covering that determines the cross-sectional contour of the wing, the cross-sectional contour forming a laminar flow airfoil that generates high lift when there is low flow resistance. At the free end facing away from the fuselage, each wing has a winglet extending transversely to the longitudinal wing axis. The winglet has a movable control surface, which allows an aerodynamic side force to be generated so as to bring the aerial vehicle to a banked position.