Abstract:
The present invention relates to additives for use in lubricant compositions to processes for producing the additives, and to the use of the additives in lubricants and in systems that are lubricated. More specifically, the additive includes a capped particle comprising: (i) one or more core particles wherein the core particle is an inorganic particle having a dimension less than about 5 μm; and (ii) one or more multi-block copolymers attached to the inorganic particles, wherein the multi-block copolymer comprises a) at least one nonpolar polymer block; b) at least one first polar polymer block; and c) at least one second polar polymer block; wherein the nonpolar polymer block is interposed between the first polar polymer block and the second polar polymer block, the first polar polymer block is attached to the core particle, and at least a portion of the second polar polymer block is not attached to the core particle. When used in a lubricant to lubricate a metallic surface of a workpiece, the capped particle preferably adhere to the metallic surface of the workpiece.
Abstract:
A combination nano and microparticle treatment for engines enhances fuel efficiency and life duration and reduces exhaust emissions. The nanoparticles are chosen from a class of hard materials, preferably alumina, silica, ceria, titania, diamond, cubic boron nitride, and molybdenum oxide. The microparticles are chosen from a class of materials of layered structures, preferably graphite, hexagonal boron nitride, magnesium silicates (talc) and molybdenum disulphide. The nano-micro combination can be chosen from the same materials. This group of materials includes zinc oxide, copper oxide, molybdenum oxide, graphite, talc, and hexagonal boron nitride. The ratio of nano to micro in the proposed combination varies with the engine characteristics and driving conditions. A laser synthesis method can be used to disperse nanoparticles in engine oil or other compatible medium. The nano and microparticle combination when used in engine oil can effect surface morphology changes such as smoothening and polishing of engine wear surfaces, improvement in coefficient of friction, and fuel efficiency enhancement up to 35% in a variety of vehicles (cars and trucks) under actual road conditions, and reduction in exhaust emissions up to 90%.
Abstract:
The present invention provides a grease composition capable of effectively preventing a rolling surface from having hydrogen brittleness-caused peeling, a grease-enclosed bearing in which the grease composition is enclosed, and a one-way clutch in which the grease composition is enclosed at a sliding portion. The grease composition contains a base grease consisting of a base oil and a thickener and an additive added to the base grease. The grease composition is capable of preventing hydrogen brittleness-caused peeling from occurring on a frictionally worn surface of a bearing portion containing an iron-based metal material or a newly generated surface consisting of the iron-based metal material exposed owing to wear. The additive contains at least one aluminum-based additive selected from among an aluminum powder and inorganic aluminum compounds. The mixing ratio of the aluminum-based additive to 100 parts by weight of the base grease is set to 0.05 to 10 parts by weight.
Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
The invention relates to thermally conductive greases that may contain carrier oil(s), dispersant(s), and thermally conductive particles, wherein the thermally conductive particles are a mixture of at least three distributions of thermally conductive particles, each of the at least three distributions of thermally conductive particles having an average (D50) particle size which differs from the other average particle sizes by at least a factor of 5
Abstract:
The object of the present invention is to provide a protective metal-ceramic film having a heterogeneous structure and possessing higher density, wear resistance, a high adhesion to a friction surface and a friction coefficient after running in not higher than 0.03-0.07.The above object is solved by providing a plating concentrate comprising a powdered metallic filler, surfactants, oil soluble dialkyl dithiophosphoric acid metal salts and a basic oil, a mineral filler based on silicates and cyclohexanol at the following ratio of components in % by weight: a powdered metallic filler0.05-20.0 surfactants 0.5-11.0 dialkyl dithiophosphoric acid metal salts 1.0-45.0 a mineral filler based on silicates 1.2-20.0 cyclohexanol0.05-2.0 A mineral filler based on silicates comprises natural minerals from a series of layered hydro silicates such as serpentinite and/or chlorite.Salts of zinc and/or tin and/or molybdenum and/or aluminum and/or copper and/or cadmium are used as dialkyl dithiophosphoric acid metal salts.
Abstract:
According to the invention there is provided a liquid friction control composition characterized as either having a high and positive friction characteristic or a low and neutral friction characteristic, comprising a retentivity agent. The liquid friction control composition may also comprise other components such as a solid lubricant, a wetting agent, a consistency modifier, and a preservative. The liquid friction control compositions may be used to modify the interfacial friction characteristics in sliding and rolling-sliding contact such as steel wheel-rail systems including mass transit and freight systems.
Abstract:
A biodegradable penetrating lubricant, comprised of: (A) at least one triglyceride oil of the formula: 1 wherein R1, R2, and R3 are aliphatic hydrocarbyl groups containing from about 7 to about 23 carbon atoms; (B) an organic solvent selected from the group comprising: (1) ethyl lactate, (2) methyl ester, and (3) combinations of 1 and 2; (C) an antioxidant; and, (D) a corrosion inhibitor. Optionally, the lubricant may further an additive selected from the group comprising: (E) a viscosity modifier; (F) an anti-wear inhibitor; and, (G) an emulsifier.
Abstract:
A grease composition comprising a base oil, a thickener selected from a metallic soap and a urea compound, and an inorganic filler having an average particle size of not greater than 2 .mu.m, and a rolling bearing having sealed therein a grease composition comprising a base oil, a urea thickener, and an inorganic filler having an average particle size of not greater than 2 .mu.m.
Abstract:
Lubricant composition containing spherical particles of a ceramic material dispersed in a supporting vehicle. The composition is used as a lubricant, metalworking cooling fluid, drilling fluid or drilling mud.