摘要:
A capacitive element formed within a semiconductor device comprises an upper electrode, a capacitive insulating film containing an oxide and/or silicate of a transition metal element, and a lower electrode having a polycrystalline conductive film composed of a material having higher oxidation resistance than the transition metal element and an amorphous or microcrystalline conductive film formed below the polycrystalline conductive film.
摘要:
A cap layer for a copper interconnect structure formed in a first dielectric layer is provided. In an embodiment, the cap layer may be formed by an in-situ deposition process in which a process gas comprising germanium, arsenic, tungsten, or gallium is introduced, thereby forming a copper-metal cap layer. In another embodiment, a copper-metal silicide cap is provided. In this embodiment, silane is introduced before, during, or after a process gas is introduced, the process gas comprising germanium, arsenic, tungsten, or gallium. Thereafter, an optional etch stop layer may be formed, and a second dielectric layer may be formed over the etch stop layer or the first dielectric layer.
摘要:
Methods of forming contacts (and optionally, local interconnects) using an ink comprising a silicide-forming metal, electrical devices such as diodes and/or transistors including such contacts and (optional) local interconnects, and methods for forming such devices are disclosed. The method of forming contacts includes depositing an ink of a silicide-forming metal onto an exposed silicon surface, drying the ink to form a silicide-forming metal precursor, and heating the silicide-forming metal precursor and the silicon surface to form a metal silicide contact. Optionally, the metal precursor ink may be selectively deposited onto a dielectric layer adjacent to the exposed silicon surface to form a metal-containing interconnect. Furthermore, one or more bulk conductive metal(s) may be deposited on remaining metal precursor ink and/or the dielectric layer. Electrical devices, such as diodes and transistors may be made using such printed contact and/or local interconnects. A metal ink may be printed for contacts as well as for local interconnects at the same time, or in the alternative, the printed metal can act as a seed for electroless deposition of other metals if different metals are desired for the contact and the interconnect lines. This approach advantageously reduces the number of processing steps and does not necessarily require any etching.
摘要:
In forming an electrode 2 on a silicon oxide film 5 on a semiconductor substrate 4 through a silicon oxide film 5, for example, the gate electrode 2 is structured in a laminated structure of a plurality of polycrystalline silicon layers 6. The portion of the gate electrode 2 is formed by a method of manufacturing a thin film having a process of depositing amorphous layers and a process of crystallizing (recrystallizing) this amorphous material. In this case, depositing of the amorphous layers is carried out dividedly by a plurality of times so that the thickness of an amorphous layer to be deposited at one time is not larger than a thickness to be prescribed by a critical stress value determined according to a fail event, the amorphous material is crystallized after each process of depositing each amorphous layer has been finished, and the process of depositing amorphous layers and the process of crystallizing the amorphous material are repeated, whereby a laminated structure of the polycrystalline layer 6 having a necessary film thickness is obtained. With the above-described arrangement, it is possible to prevent a deterioration of electric characteristics of a semiconductor device and an occurrence of a defect, such as a peeling off between layers, cracks in a layer, etc., and it is possible to obtain a polycrystalline layer of small grain size in a desired film thickness by a lamination of polycrystalline materials.
摘要:
Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
摘要:
A semiconductor device having a nonvolatile memory is reduced in size. In an AND type flash memory having a plurality of nonvolatile memory cells having a plurality of first electrodes, a plurality of word lines crossing therewith, and a plurality of floating gate electrodes disposed at positions which respectively lie between the plurality of adjacent first electrodes and overlap the plurality of word lines, as seen in plan view, the plurality of floating gate electrodes are formed in a convex shape, as seen in cross section, so as to be higher than the first electrodes. As a result, even when nonvolatile memory cells are reduced in size, it is possible to process the floating gate electrodes with ease. In addition, it is possible to improve the coupling ratio between floating gate electrodes and control gate electrodes of the word lines without increasing the area occupied by the nonvolatile memory cells.
摘要:
Canting or falling of an upper metal line may be prevented by improving adhesion between an insulation layer and a metal layer. A method for forming a semiconductor which improves adhesion between an insulation layer and a metal layer includes: preparing a substrate formed with a lower metal layer; forming an insulation layer on the substrate; forming a plug after etching the insulation layer; performing a silicon ion implantation process from above the insulation layer; forming an upper metal layer on the insulation layer, the upper metal layer having a bottom layer of a Ti layer or a TiN layer; and siliciding a predetermined region of the bottom layer of the upper metal layer by heat treatment of the substrate.
摘要:
This invention provides a method for manufacturing a semiconductor silicon substrate by use of carbon dioxide in a supercritical state, which method is capable of making the semiconductor silicon substrate highly reliable one. Specifically, this invention provides a method for manufacturing a semiconductor silicon substrate including at least two of: a cleaning step of cleaning a substrate to be treated in a presence of carbon dioxide in a supercritical state; a film forming step of forming at least one of a conducting film, an insulating film and barrier film on the substrate to be treated in the presence of carbon dioxide in the supercritical state; an etching step of etching the substrate to be treated in the presence of carbon dioxide in the supercritical state; and a resist removing step of removing a resist on the substrate to be treated in the presence of carbon dioxide in the supercritical state.
摘要:
In forming an electrode 2 on a silicon oxide film 5 on a semiconductor substrate 4 through a silicon oxide film 5, for example, the gate electrode 2 is structured in a laminated structure of a plurality of polycrystalline silicon layers 6. The portion of the gate electrode 2 is formed by a method of manufacturing a thin film having a process of depositing amorphous layers and a process of crystallizing (recrystallizing) this amorphous material. In this case, depositing of the amorphous layers is carried out dividedly by a plurality of times so that the thickness of an amorphous layer to be deposited at one time is not larger than a thickness to be prescribed by a critical stress value determined according to a fail event, the amorphous material is crystallized after each process of depositing each amorphous layer has been finished, and the process of depositing amorphous layers and the process of crystallizing the amorphous material are repeated, whereby a laminated structure of the polycrystalline layer 6 having a necessary film thickness is obtained. With the above-described arrangement, it is possible to prevent a deterioration of electric characteristics of a semiconductor device and an occurrence of a defect, such as a peeling off between layers, cracks in a layer, etc., and it is possible to obtain a polycrystalline layer of small grain size in a desired film thickness by a lamination of polycrystalline materials.
摘要:
An aspect of the present invention provides a method of manufacturing a semiconductor device, including, forming an insulating film on a silicide layer formed at the surface of a silicon semiconductor substrate, etching the insulating film to form a contact hole in which the silicide layer is exposed, forming a metal nitride film on the bottom and side wall of the contact hole, carrying out a first heating process at 600° C. or lower on the substrate, carrying out, during the first heating process, a second heating process for 10 msec or shorter with light whose main wavelength is shorter than a light absorbing end of silicon, forming a contact conductor in the contact hole after the second heating process, and forming, on the insulating film, wiring that is electrically connected to the substrate through the contact conductor.