Abstract:
A circuit board interconnection system is disclosed according to the embodiments of the present invention. The system includes a first circuit board, a second circuit board, a third circuit board, a first connector and a second connector. The first connector and the second connector are mounted at two sides of the first circuit board respectively so that the second circuit board mounted on the first connector is perpendicular to the third circuit board on the second connector. The first connector and the second connector mounted respectively at two sides of the first circuit board are coupled to each other via an impedance controlled mechanism on the first circuit board. Another circuit board interconnection system, a circuit board, a connector assembly and a method for manufacturing a circuit board are disclosed according to the present invention. The circuit board adopts the impedance controlled mechanism which has a shielding function and an impedance controlled function to replace a via hole on the existing circuit board where the via hole has an uncontrollable resistance.
Abstract:
An LSI package includes an interface module having first and second surfaces and including a wiring board having a first through hole, a driver selectively provided on the second surface, a transmission line connected to the driver, and a first terminal formed on the second surface and connected to the driver, an interposer having a third surface facing the second surface and a fourth surface, and including a signal processor and a second terminal provided on the third surface, a third terminal provided on the fourth surface and a second through hole, the third surface facing the second surface except a region where the driver portion is provided. The interposer is arranged so that the first through hole matches with the second through hole, and a movable guide pin is inserted into the first and second through holes to position the interface module and the interposer.
Abstract:
A cable assembly includes an insulated housing (100) and a plurality of contacts (10) received therein, each contact having a tail portion extending beyond rear surface of the insulated housing; a printed circuit board (2) having a front portion and an opposite rear portion, with a plurality of conductive traces (220) arranged on the front portion and a number of conductive pads (240, 242) arranged on the rear portion. The tail portions of the contacts are soldered to the conductive traces of the front portion of the printed circuit board. The conductive pads on the rear portion of the printed circuit board are separated into at least two groups and connecting to two kinds of cables (4), selectively. A cover (9) is mold over a rear portion of the connector and a front portion of corresponding cable.
Abstract:
A power supply is described. The power supply includes a main power connector and one or more circuit boards rigidly connected to the main power connector, including mechanical and electrical connection. The main power connector has a body that includes a plurality of contacts. The main power connector is configured to mate with a corresponding connector on a motherboard in a computer. The motherboard is coupled to one or more processors. A first plane including a first circuit board in the one or more circuit boards is substantially parallel to a symmetry plane of the body. The symmetry plane includes a direction of insertion of the main power connector when mated with the corresponding connector. The one or more circuit boards include one or more switched mode power supplies to convert an input signal to one or more output signals.
Abstract:
An assembly for conducting an electronic signal. The assembly includes a substrate and an electronic cable. The substrate has distinct first and second regions to enable connection to first and second circuit boards, respectively. First and second through-holes are formed in the substrate in the first and second regions, respectively. The electronic cable is disposed within the first through-hole and extends out of the first through hole, adjacent the substrate and into the second through-hole.
Abstract:
A direct-connect signaling system including a printed circuit board and first and second integrated circuit packages disposed on the printed circuit board. A plurality of electric signal conductors extend between the first and second integrated circuit packages suspended above the printed circuit board.
Abstract:
A cable assembly (100) according to the present invention includes a number of wires (4) each having an inner conductor (41) and an insulation layer (42) enclosing the conductor, a PCB (2) having opposite rear and front ends, an upper surface (21) and a number of conductive pads (23) formed with said upper surface, and at least one wire management board (3, 3′) each defining opposite top and bottom surfaces and having a base mounted on said upper surface of the PCB and a number of wire management slots (32, 32′) formed integrally with said base and extending toward said conductive pads of the PCB. The inner conductors are received in the corresponding wire management slots and physically and electrically connect with the corresponding conductive pads.
Abstract:
An embodiment of the present invention is provided with a first wiring board, a cable component juxtaposed with the first wiring board, and second wiring boards laminated onto the first wiring board, which have a second conductor layer pattern connected to the cable component and a second insulating substrate. The cable component comprises a cable having a conductor wire and a sheath portion insulating the conductor wire and a planetary gear-shaped conductor wire coupler connected to the conductor wire and having conductor wire projections which, by passing through the second insulating substrate, abut against the second conductor layer pattern.
Abstract:
A rotatable signal socket includes a fixing part, a connecting part, and a flexible printed circuit board (FPCB). The rotatable signal socket is assembled on a printed circuit board (PCB) of an electronic device for connecting a signal cable to the PCB. The fixing part is fixed on the PCB. One end of the connecting part is pivoted to the fixing part in order to rotate relative to the fixing part and the PCB. The signal cable is inserted into the other end of the connecting part. The FPCB extends from the fixing part to the connecting part, so as to electrically connect the PCB and the signal cable, thus providing a signal socket that is easy to be assembled and occupies little space.
Abstract:
A hybrid memory interconnect system involving flexible cable and board interconnects is provided for improved memory bandwidth and power efficiency performance. To this purpose, signals between a microprocessor chip and one or more memory chips are routed via separate conductive paths, e.g. flexible cable for high-speed signals and conventional board interconnects for low-speed signals. The memory chips may be connected to a flexible cable and a supporting printed circuit board in various ways.