Abstract:
A barrier film including a substrate; a base polymer layer adjacent to the substrate; an oxide layer adjacent to the base polymer layer; a adhesion-modifying layer adjacent to the oxide layer; and a top coat polymer layer adjacent to the adhesion-modifying layer. An optional inorganic layer can be applied over the top coat polymer layer. The inclusion of a adhesion-modifying layer provides for enhanced resistance to moisture and improved peel strength adhesion of the top coat polymer layer to the underlying barrier stack layers.
Abstract:
Provided are modified hybrid sol-gel precursor solutions and coatings formed from such solutions. A modified hybrid sol-gel precursor solution includes an inorganic precursor, cross-linkable inorganic-organic precursor, cross-linkable organic precursor, protic solvent, and aprotic solvent. The inorganic precursor may include a metal or metalloid and two or more hydrolysable groups. The cross-linkable inorganic-organic precursor may include a metal, hydrolysable group, and organic molecule. The cross-linkable organic precursor has another organic molecule with two or more second cross-linking groups. A combination of protic and aprotic solvents in the same solution may be used to control properties of the solutions, thermodynamics, and other processing aspects. The solution may also include nanoparticles. The nanoparticles may include functionalized surface to form covalent bonds with one or more precursors of the solution, such as a plasma treated surface. The nanoparticles may be sized to fit into the sol-gel network without substantially disturbing this network.
Abstract:
A thin-film phosphor layer can be formed by an improved deposition method involving: (1) forming a phosphor powder layer that is substantially uniformly-deposited on a substrate surface; and (2) forming a polymer binder layer to fill gaps among loosely packed phosphor particles, thereby forming a substantially continuous layer of thin film.
Abstract:
A planar light-emitting module includes a planar substrate applied with a reflection film, a light-emitting element mounted on the reflection film side of the substrate, a first transparent resin layer disposed to encapsulate at least the light-emitting element, and a second transparent resin layer disposed to sandwich an air layer between the second transparent resin layer and the first transparent resin layer. A phosphor for converting the wavelength of light radiated from the light-emitting element is disposed by dispersion in the first and second transparent resin layers and the phosphor is selected such that when the second transparent resin layer is viewed from the outside, pseudo-white light is observed.
Abstract:
A phosphor adhesive sheet includes a phosphor layer containing a phosphor and an adhesive layer laminated on one surface in a thickness direction of the phosphor layer. The adhesive layer is formed of a silicone resin composition having both thermoplastic and thermosetting properties.
Abstract:
Disclosed are a plastic organic electroluminescent display device to realize flexibility and prevent visualization of exterior light and a method for fabricating the same. The plastic organic electroluminescent display device includes a light emitting cell including a first electrode, a light emitting organic layer and a second electrode arranged on a substrate in this order, a barrier film adhered to the substrate provided with the light emitting cell, to seal the light emitting cell, the barrier film including an optically isotropic support film, and a circular polarizer adhered onto the optically isotropic barrier film.
Abstract:
A light emitting device includes a solid-state light emitting element; and a wavelength converting member made of a transparent resin containing a fluorescent material, the transparent resin being coated on an output surface of the solid-state light emitting element. The wavelength converting member is formed to have a thickness larger in a vertical direction of the solid-state light emitting element than that in a lateral direction of the solid-state light emitting element in a cross section that is parallel to a light output direction of the solid-state light emitting element and have a zenith in the light output direction.
Abstract:
A method of manufacturing an LED lamp is disclosed. The method includes admixing an uncured curable liquid resin and a phosphor, dispensing the uncured admixture on an LED chip, centrifuging the chip and the admixture to disperse the phosphor particles in the uncured resin, and curing the resin while the phosphor particles remain distributed.
Abstract:
A headlamp includes (i) a semiconductor laser for emitting laser beams, (ii) a light emitting section that includes a first fluorescent material having a peak of emission spectrum which peak falls within a range from 450 nm to 500 nm, and that emits white fluorescence while being irradiated with exciting light emitted from the semiconductor laser, and (iii) a transmission filter for shielding the laser beams and transmitting the fluorescence emitted from the light emitting section.
Abstract:
A method for producing electroluminescent textiles and to electroluminescent textiles produced accordingly is provided. A layer arrangement (10) of an electroluminescent textile comprises a textile substrate (1), a protective layer (2), a first transparent conductive layer or front electrode (3), a light-emitting layer (4), a dielectric layer (5), a second conductive layer or back electrode (6), a conductive rail (7), and a cover layer (8). As associated method is further provided.