Abstract:
Multiple configuration light emitting diode (LED) devices and methods are disclosed wherein LEDs within the device can be selectively configured for use in higher voltage, or variable voltage, applications. Variable arrangements of LEDs can be configured. Arrangements can include one or more LEDs connected in series, parallel, and/or a combination thereof. A surface over which one or more LEDs may be mounted can comprise one or more electrically and/or thermally isolated portions.
Abstract:
Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
Abstract:
An LED component includes, according to a first embodiment, a monolithic substrate, an array of LED chips disposed on a surface of the substrate, and an optical lens overlying the LED chips and having a lens base attached to the substrate, where the LED chips are positioned to provide a peak emission shifted from a perpendicular centerline of the lens base. The LED component includes, according to a second embodiment, a monolithic substrate, an array of LED chips disposed on a surface of the substrate, and an array of optical lenses, each optical lens overlying at least one of the LED chips and having a lens base attached to the substrate, where at least one of the LED chips is positioned to provide a peak emission shifted from a perpendicular centerline of the respective lens base.
Abstract:
A light emitting packaged diode ids disclosed that includes a light emitting diode mounted in a reflective package in which the surfaces adjacent the diode are near Lambertian reflectors. An encapsulant in the package is bordered by the Lambertian reflectors and a phosphor in the encapsulant converts frequencies emitted by the LED chip and, together with the frequencies emitted by the LED chip, produces white light. A substantially flat meniscus formed by the encapsulant defines the emitting surface of the packaged diode.
Abstract:
Light emitting devices for light emitting diodes (LEDs) are disclosed. In one embodiment a light emitting device can include a substrate and a plurality of light emitting diodes (LEDs) disposed over the substrate in patterned arrays. The arrays can include one or more patterns of LEDs. A light emitting device can further include a retention material disposed about the array of LEDs. In one aspect, the retention material can be dispensed.
Abstract:
A method of forming an LED lamp with a desired distribution of phosphor is disclosed. The method includes the steps of mixing a plurality of phosphor particles in an uncured polymer resin for which the viscosity can be controlled in response to temperature to form a substantially uniform suspension of the phosphor particles in the resin. The uncured resin is then placed into a defined position adjacent an LED chip and the temperature of the resin is increased to correspondingly decrease its viscosity but to less than the temperature at which the resin would cure unreasonably quickly. The phosphor particles are encouraged to settle in the lowered-viscosity resin to a desired position with respect to the LED chip, and the temperature of the resin is thereafter increased to the point at which it will cured and solidify.
Abstract:
Light emitting diode (LED) devices, systems, and methods are disclosed. In one aspect, an illumination panel can be configured to provide backlighting for a liquid crystal display (LCD) panel. The illumination panel can include one or more LEDs arranged in an array. The one or more LEDs can be attached using metal-to-metal die attach methods over an illumination panel, or attached within packages disposed over the illumination panel. In one aspect, the one or more LEDs can be attached using robust metal-to-metal die attach techniques and/or materials disclosed herein.
Abstract:
A light emitting diode is disclosed that includes a silicon carbide substrate and a light emitting structure formed from the Group III nitride material system on the substrate. The diode has an area greater than 100,000 square microns and has a radiant flux at 20 milliamps current of at least 29 milliwatts at its dominant wavelength between 390 and 540 nanometers.
Abstract:
A method of forming electronic device precursors and devices with reduced cracking in relevant layers is disclosed along with resulting structures. The method includes the steps of growing a transition layer of undoped Group III nitride on a substrate that is other than a Group III nitride, growing an active structure of Group III nitride on the undoped layer, and removing the substrate from the undoped layer.