Abstract:
A tooth implant device comprises an abutment and a fixture. The abutment includes an upper portion to which a dental crown is attached and a lower portion whose cross-section decreases to a downward direction. The fixture includes an abutment inserting hole into which the abutment is inserted and is made of a bone-friendly metallic material. The fixture has an outer surface without threaded portions and has stiffness in a range of 5 percents to 40 percents compared to that of a solid form. When the abutment is inserted into the abutment inserting hole, the flexible fixture expands to apply a uniform stress to alveolar bone and be secured thereto in a taper-lock fashion.
Abstract:
Provided is a non-hydrolytic transparent composite composition having excellent transparency and heat resistance, and a low thermal expansion coefficient. Particularly, the transparent composite composition includes a glass filler dispersed in a crosslinked transparent resin produced by a non-hydrolytic reaction. The non-hydrolytic transparent siloxane resin is a resin having Si—O (siloxane) bonds, a resin having at least one kind of heterometal bonds, including Si—O bonds, or the resin further containing other ingredients. When the transparent siloxane resin produced by a non-hydrolytic reaction forms a composite in combination with the glass filler, the composite realizes high transparency and heat resistance, as well as a low thermal expansion coefficient. Therefore, the transparent composite composition is useful as a substrate for thin film transistor (TFT) devices, display devices and optical devices.
Abstract:
A method of manufacturing a thin film transistor array panel includes forming an amorphous silicon film on an insulating substrate; forming a sacrificial film having an embossed surface on the amorphous silicon film; contacting a metal plate with the sacrificial film and performing heat-treatment for crystallizing the amorphous silicon film to change the amorphous silicon film to a polycrystalline silicon film; removing the metal plate and the sacrificial film; patterning the polycrystalline silicon film to form a semiconductor; forming a gate insulating layer which covers the semiconductor; forming a gate line on the gate insulating layer, a portion of the gate line overlapping the semiconductor; heavily doping a conductive impurity into portions of the semiconductor to form a source region and a drain region; forming an interlayer insulating layer which covers the gate line and the semiconductor; and forming a data line and an output electrode connected to the source and drain regions, respectively, on the interlayer insulating layer.
Abstract:
This invention relates to a L10-ordered FePt nanodot array which is manufactured using capillary force lithography, to a method of manufacturing the L10-ordered FePt nanodot array and to a high density magnetic recording medium using the L10-ordered FePt nanodot array. This method includes depositing a FePt thin film on a MgO substrate, forming a thin film made of a polymer material on the deposited FePt thin film using spin coating, bringing a mold into contact with the spin coated FePt thin film, annealing the mold and a polymer pattern which are in contact with each other, cooling and separating the mold and the polymer pattern which are annealed, controlling a size of the polymer pattern through reactive ion etching, ion milling a portion of the FePt thin film uncovered with the polymer pattern thus forming a FePt nanodot array and then removing a remaining polymer layer, and annealing the FePt nanodot array.
Abstract:
Provided is a method for modifying a surface of a cyclic olefin copolymer, comprising: coating a compound of the following Chemical Formula 1 on the surface of a cyclic olefin copolymer substrate, irradiating UV light on the cyclic olefin copolymer substrate, and polymerizing a monomer on the cyclic olefin where X is H or F, and n is an integer of 1 to 6.
Abstract:
The present invention relates to a method for manufacturing a field emitter electrode, in which nanowires are aligned horizontally, perpendicularly or at any angle between horizontal and perpendicular according to the direction of a generated electromagnetic field. More particularly, the present invention relates to a method for manufacturing a field emitter electrode having nanowires aligned horizontally, perpendicularly or at any angle between horizontal and perpendicular according to the direction of a generated electromagnetic field, the method comprising the steps of diluting nanowires in a solvent, dispersing the resulting solution on a substrate fixed to the upper part of an electromagnetic field generator, and fixing the nanowires aligned in the direction of an electromagnetic field generated from the electromagnetic field generator. According to the present invention, a high capacity field emitter electrode having high density nanowires aligned according to the direction of a generated electromagnetic field can be fabricated by a simple process and nanowires can be used as positive electrode materials for field emission displays (FEDs), sensors, electrodes, backlights and the like.
Abstract:
An apparatus and method of reconstructing a three-dimensional (3D) image from two-dimensional (2D) images are disclosed. Three dimensional (3D) data may be reconstructed in an x-ray generation tube at a limited angle, and repeatedly updated for each pixel. A median from among each pixel of reconstruction data may be selected. Backprojecting may be performed using a search direction weight calculated using a reprojection image and residual image. A 3D image satisfying a Level 1 (L1) norm fidelity and sparsity constraint of the reconstruction data may be reconstructed.
Abstract:
An organic material including a hydrophilic polymer and an organic moiety having a hydroxyl substituted C6-C14 aromatic functional group, the organic moiety binding to an end or a side of the hydrophilic polymer.
Abstract:
The present invention relates to a method for manufacturing a SrTiO3 series varistor using grain boundary segregation, and more particularly, to a method for manufacturing a SrTiO3 series varistor by sintering a powdered composition in which acceptors such as Al and Fe are added in powdered form and then sintered under a reducing atmosphere and heat-treated them in the air to selectively form electrical conduction barriers at grain boundaries in a process for manufacturing SrTiO3 series varistor having an excellent non-linear coefficient and a breakdown voltage suitable for use.
Abstract:
A unified fuel processing reactor for a solid oxide fuel cell can reform hydrocarbon-based fuel into hydrogen-rich gas, remove a sulfur component, and convert non-converted fuel and a low carbon (C2˜C5) hydrocarbon compound into hydrogen and methane in a single reactor. The reactor comprises a primary-reformer which reforms a hydrocarbon-base fuel and generates hydrogen-rich reformed gas, a desulfurizer which removes a sulfur component from the reformed gas, and a post-reformer which selectively decomposes a low carbon (C2˜C5) hydrocarbon in the desulfurized reformed gas into hydrogen and methane. The primary-reformer, desulfurizer and post-reformer are in the unified reactor and isolated, except for a fluid passage, from each other by internal partition walls. The primary-reformer is disposed at a center portion of the reactor. The post-reformer and the desulfurizer are concentrically disposed outside of the primary-reformer.