Abstract:
An acid-amplifier having an acetal group and a photoresist composition including the same, are disclosed. The acid-amplifier produces an acid (second acid) during a post-exposure-bake (PEB), which is induced by an acid (first acid) generated from a photo-acid generator (PAG) at the exposure process so that a line edge roughness (LER) of the photoresist pattern and photoresist energy sensitivity are improved. The acid-amplifier has a structure of following Formula 1. in Formula 1, R is C4˜C20 mono-cyclic or multi-cyclic saturated hydrocarbon, R1 is C1˜C10 linear hydrocarbon, C1˜C10 perfluoro compound or C5˜C20 aromatic compound, Ra and Rb are independently hydrogen atom or C1˜C4 saturated hydrocarbon and A is independently oxygen atom (O) or sulfur atom (S).
Abstract:
An image reproduction apparatus including a power control unit detecting whether an error has occurred in supplying power to the image reproduction apparatus; and a booting control unit selectively cold-booting the image reproduction apparatus based on the detection of whether the error with supplying the power has occurred.
Abstract:
Provided is a method of fabricating a nano-wire array, including the steps of: depositing a nano-wire solution, which contains nano-wires, on a substrate; forming a first etch region in a stripe shape on the substrate and then patterning the nano-wires; forming drain and source electrode lines parallel to each other with the patterned nano-wires interposed therebetween; forming a plurality of drain electrodes which have one end connected to the drain electrode line and contact at least one of the nano-wires, and forming a plurality of source electrodes, which have one end connected to the source electrode line and contact the nano-wires that contact the drain electrodes; forming a second etch region between pairs of the drain and source electrodes so as to prevent electrical contacts between the pairs of the drain and source electrodes; forming an insulating layer on the substrate; and forming a gate electrode between the drain and source electrodes contacting the nano-wires on the insulating layer. Accordingly, even in an unparallel structure of nano-wires to electrode lines, a large scale nano-wire array is practicable and applicable to an integrated circuit or display unit with nano-wire alignment difficulty, as well as to device applications using flexible substrates.
Abstract:
The present invention provides a process for preparing an acid addition salt of a synthetic intermediate for carbapenem antibiotics and a novel acid addition salt of a synthetic intermediate for carbapenem antibiotics obtained from the process. The present invention also provides a process for preparing a carbapenem antibiotic using the acid addition salt. According to the process of the present invention, an acid addition salt of a synthetic intermediate for carbapenem antibiotics can be prepared in a high yield and high purity, without conducting column chromatography. Thus, the process of the present invention can be applied to mass production with an industrial scale. Furthermore, since the acid addition salts have solid forms, they are easy to handle and keep in a manufacturing site.
Abstract:
A photolithography system using an optical microscope is provided that can form various types of selective patterns at a low cost in small-scale research using unit-size silicon substrates which is not targeted for mass production, without requiring an expensive photomask.
Abstract:
A photoresist monomer having a sulfonyl group, a polymer thereof and a photoresist composition containing the same are disclosed. The photoresist monomer is represented by following Formula. wherein, R* is a hydrogen atom or a methyl group, R1 and R2 are independently a C1˜C20 alkyl group, a C4˜C20 cycloalkyl group, a C6˜C20 aryl group or a C7˜C20 arylalkyl group, one of R1 and R2 may not exist, and R1 and R2 can be connected to form a ring.
Abstract:
A method includes forming a signal line on the substrate so as to have a predetermined opening portion; at least one supporting frame each formed on the substrate at both sides of the signal line; a ground line formed on the substrate between the supporting frame and the signal line; a moving plate fixed to the supporting frame at both sides thereof, the moving plate being movable upward and downward; a switching unit positioned on the moving plate, the switching unit comprising contact means for connecting the opened signal line; and a supporting layer for supporting the moving plate and the switching unit, wherein the supporting layer comprises a support protrusion portion for maintaining a distance from the substrate.
Abstract:
A piezoelectric microspeaker using microelectromechanical systems (MEMS) and a method of manufacturing the same are provided. The piezoelectric microspeaker includes a piezoelectric layer disposed on an elastic thin layer, and a resonance change unit patterned on one of a bottom surface of the elastic thin layer and a top surface of the piezoelectric layer.
Abstract:
Disclosed are a photo-sensitive compound and a photoresist composition containing the same, for forming ultra-fine photoresist patterns. The photo-sensitive compound is resented by following Formula 1, wherein x is an integer of 1 to 5, y is an integer of 2 to 6, R is a C2˜C20 hydrocarbon group. The photoresist composition comprises 1˜85 weight % of a photo-sensitive compound represented by following Formula 1, 1˜55 weight % of a compound which reacts with a hydroxyl group (—OH) of the compound represented by Formula 1 to combine with the photo-sensitive compound represented by Formula 1; 1˜15 weight % of a photo-acid generator; and 12˜97 weight % of an organic solvent.
Abstract:
A photoresist polymer having a spiro cyclic ketal group, and a photoresist composition including the same is disclosed. The photoresist polymer and the photoresist composition can improve the resolution and the process margin due to its low activation energy of the deprotection reaction of the spiro cyclic ketal group, and can produce fine photoresist patterns due to its low PEB (Post Exposure Baking) temperature sensitivity.