Abstract:
A method and apparatus for characterizing and screening an array of material samples is disclosed. The apparatus includes a sample block having a plurality of regions for containing the material samples, a polarized light source to illuminate the materials, an analyzer having a polarization direction different than the polarization direction of the polarized light source, and a detector for analyzing changes in the intensity of the light beams. The light source, together with a polarizer, may include a plurality of light beams to simultaneously illuminate the entire array of materials with linearly polarized light so that characterization and screening can be performed in parallel. In addition, the materials in the sample block maybe subjected to different environmental conditions or mechanical stresses, and the detector analyzes the array as a function of the different environmental conditions or mechanical stresses.
Abstract:
Sensors for determining the presence and concentration of biomolecules in a biological sample are provided in the form of polymer brushes, which comprise a substrate having a surface modified with a hydrophobic polymer segment, attached to which is a water-dispersible or water-soluble polymer segment having functional groups that bind probes. The method of synthesis of such sensors preferably includes use of controlled free radical polymerization techniques, which allows for controlled architecture polymers to modify the surface of the substrate, and the use of monomers possessing functional groups which do not require activation prior to probe attachment. In this manner functional groups in the polymer chain are removed from the surface, which allows for solution chemistry to be more realistically reproduced with the benefits of a solid bound probe.
Abstract:
An apparatus including a basis that has a plurality of wells associated therewith for defining a plurality of electrochemical cells; at least two electrodes sealingly disposed in each electrochemical cell; and circuitry for providing an electrical connection between an electrical source and each said cell. A particularly preferred apparatus employs at least one printed circuit board secured to the base. In a preferred method, candidate materials are introduced into the apparatus and their respective performances are analyzed.
Abstract:
A method for high throughput mechanical property and bulge testing of materials libraries. A plurality of samples on a substrate are monitored for their response to a force from a fluid.
Abstract:
A library of materials is screened for viscosity. A library of materials is provided. The library is contacted with at least one capillary for applying a force through the materials. The relative flow resistance of the materials is measured in response to the force; and the materials in the library are ranked based on the monitored flow resistance.
Abstract:
The present invention relates to a miniature rheometer, a parallel rheometer, and improved force sensor elements which may advantageously be used in combination with the miniature rheometer and the parallel rheometer. The miniature rheometer is adapted to determine Theological characteristics of materials which are provided in the form of small quantity samples. The miniature rheometer comprises an actuating element, a sensing element and a feedback circuit to provide rebalance of the shear force applied by the sample to the sensing element, which insures an exceptional stiffness in determining the shear strain so as to allow measurements of high accuracy. The parallel rheometer of the present invention allows simultaneous measurements of a plurality of samples so as to allow of a plurality of samples within a short time period. The force sensor element according to the present invention allows simultaneous measurement of a shear force and a normal force applied to the sensor element. Moreover, a rheometer is provided which comprises a force sensor based on stress-optic material.
Abstract:
An improved system, device and method for characterizing a fluid sample that includes injecting a fluid sample into a mobile phase of a flow characterization system, and detecting a property of the fluid sample or of a component thereof with a flow detector comprising a mechanical resonator, preferably one that is operated at a frequency less than about 1 MHz, such as a tuning fork resonator.
Abstract:
New ligands, compositions, metal-ligand complexes and arrays with pyridyl-amine ligands are disclosed that catalyze the polymerization of monomers into polymers. Certain of these catalysts with hafnium metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, 1-octene, isobutylene or styrene. Certain of the catalysts are particularly effective at polymerizing propylene to high molecular weight isotactic polypropylene in a solution process at a variety of polymerization conditions.
Abstract:
A novel gas injection valve for injecting discrete charges of gas into a mobile phase or carrier stream is provided. Injection valves of the invention comprise a plurality of microvalves capable of receiving gas at different pressures and emitting discrete charges of gas at approximately the same pressure. The invention further provides for parallel injection valve arrays capable of injecting multiple samples substantially simultaneously and a method of injecting discrete gas samples at a controlled pressure to a high-resolution gas chromatograph.
Abstract:
An apparatus for use in testing a plurality of compositions in parallel. The apparatus includes an upper plate having a plurality of openings extending therethrough to form upper fluid chambers and a lower plate having a plurality of openings extending at least partially therethrough to form cavities. A central plate having a plurality of openings extending therethrough to form central fluid chambers is positioned between the upper and lower plates with the central chambers in alignment with the upper chambers and the cavities. A porous sheet is interposed between the upper and central plates such that an upper surface of the sheet is in contact with fluid within the upper chamber and a lower surface of the sheet is in contact with fluid within the central chamber. The apparatus further includes a flexible membrane positioned between the lower and central plates such that changes in pressure within the cavities or fluid chambers cause deflection of the membrane to force fluid to pass through the porous sheet.